y এর জন্য সমাধান করুন
y=-\frac{x}{1-x}
x\neq 1
x এর জন্য সমাধান করুন
x=-\frac{y}{1-y}
y\neq 1
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
x\left(-y+1\right)=-y+1-1
ভ্যারিয়েবল y 1-এর সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে -y+1 দিয়ে গুণ করুন।
-xy+x=-y+1-1
x কে -y+1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
-xy+x=-y
0 পেতে 1 থেকে 1 বাদ দিন।
-xy+x+y=0
উভয় সাইডে y যোগ করুন৷
-xy+y=-x
উভয় দিক থেকে x বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
\left(-x+1\right)y=-x
y আছে এমন সমস্ত টার্ম একত্রিত করুন।
\left(1-x\right)y=-x
সমীকরণটি এখন স্ট্যান্ডার্ড ফর্মে রয়েছে।
\frac{\left(1-x\right)y}{1-x}=-\frac{x}{1-x}
-x+1 দিয়ে উভয় দিককে ভাগ করুন।
y=-\frac{x}{1-x}
-x+1 দিয়ে ভাগ করে -x+1 দিয়ে গুণ করে আগের অবস্থায় আনুন।
y=-\frac{x}{1-x}\text{, }y\neq 1
ভ্যারিয়েবল y 1-এর সমান হতে পারে না৷
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}