মূল বিষয়বস্তুতে এড়িয়ে যান
x, y এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x-y=5,-4x+5y=7
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x-y=5
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=y+5
সমীকরণের উভয় দিকে y যোগ করুন।
-4\left(y+5\right)+5y=7
অন্য সমীকরণ -4x+5y=7 এ x এর জন্য y+5 বিপরীত করু ন।
-4y-20+5y=7
-4 কে y+5 বার গুণ করুন।
y-20=7
5y এ -4y যোগ করুন।
y=27
সমীকরণের উভয় দিকে 20 যোগ করুন।
x=27+5
x=y+5 এ y এর জন্য পরিবর্ত হিসাবে 27 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=32
27 এ 5 যোগ করুন।
x=32,y=27
সিস্টেম এখন সমাধান করা হয়েছে।
x-y=5,-4x+5y=7
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\-4&5\end{matrix}\right))\left(\begin{matrix}5\\7\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5-\left(-\left(-4\right)\right)}&-\frac{-1}{5-\left(-\left(-4\right)\right)}\\-\frac{-4}{5-\left(-\left(-4\right)\right)}&\frac{1}{5-\left(-\left(-4\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&1\\4&1\end{matrix}\right)\left(\begin{matrix}5\\7\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 5+7\\4\times 5+7\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}32\\27\end{matrix}\right)
পাটিগণিত করুন।
x=32,y=27
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
x-y=5,-4x+5y=7
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
-4x-4\left(-1\right)y=-4\times 5,-4x+5y=7
x এবং -4x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে -4 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
-4x+4y=-20,-4x+5y=7
সিমপ্লিফাই।
-4x+4x+4y-5y=-20-7
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে -4x+4y=-20 থেকে -4x+5y=7 বাদ দিন।
4y-5y=-20-7
4x এ -4x যোগ করুন। টার্ম -4x এবং 4x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
-y=-20-7
-5y এ 4y যোগ করুন।
-y=-27
-7 এ -20 যোগ করুন।
y=27
-1 দিয়ে উভয় দিককে ভাগ করুন।
-4x+5\times 27=7
-4x+5y=7 এ y এর জন্য পরিবর্ত হিসাবে 27 ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
-4x+135=7
5 কে 27 বার গুণ করুন।
-4x=-128
সমীকরণের উভয় দিক থেকে 135 বাদ দিন।
x=32
-4 দিয়ে উভয় দিককে ভাগ করুন।
x=32,y=27
সিস্টেম এখন সমাধান করা হয়েছে।