x এর জন্য সমাধান করুন
x=-5
x=6
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
a+b=-1 ab=-30
সমীকরণটি সমাধান করতে, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) সূত্র ব্যবহার করে x^{2}-x-30 গুণনীয়ক করুন। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-30 2,-15 3,-10 5,-6
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -30 প্রদান করে।
1-30=-29 2-15=-13 3-10=-7 5-6=-1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-6 b=5
সমাধানটি হল সেই জোড়া যা -1 যোগফল প্রদান করে।
\left(x-6\right)\left(x+5\right)
প্রাপ্ত মানগুলো ব্যবহার করে গুণনীয়ক করা অভিব্যক্তি \left(x+a\right)\left(x+b\right) পুনরায় লিখুন।
x=6 x=-5
সমীকরণের সমাধানগুলো খুঁজতে, x-6=0 এবং x+5=0 সমাধান করুন।
a+b=-1 ab=1\left(-30\right)=-30
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি x^{2}+ax+bx-30 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-30 2,-15 3,-10 5,-6
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -30 প্রদান করে।
1-30=-29 2-15=-13 3-10=-7 5-6=-1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-6 b=5
সমাধানটি হল সেই জোড়া যা -1 যোগফল প্রদান করে।
\left(x^{2}-6x\right)+\left(5x-30\right)
\left(x^{2}-6x\right)+\left(5x-30\right) হিসেবে x^{2}-x-30 পুনরায় লিখুন৷
x\left(x-6\right)+5\left(x-6\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 5 ফ্যাক্টর আউট।
\left(x-6\right)\left(x+5\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-6 ফ্যাক্টর আউট করুন।
x=6 x=-5
সমীকরণের সমাধানগুলো খুঁজতে, x-6=0 এবং x+5=0 সমাধান করুন।
x^{2}-x-30=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-30\right)}}{2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 1, b এর জন্য -1 এবং c এর জন্য -30 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-1\right)±\sqrt{1+120}}{2}
-4 কে -30 বার গুণ করুন।
x=\frac{-\left(-1\right)±\sqrt{121}}{2}
120 এ 1 যোগ করুন।
x=\frac{-\left(-1\right)±11}{2}
121 এর স্কোয়ার রুট নিন।
x=\frac{1±11}{2}
-1-এর বিপরীত হলো 1।
x=\frac{12}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{1±11}{2} যখন ± হল যোগ৷ 11 এ 1 যোগ করুন।
x=6
12 কে 2 দিয়ে ভাগ করুন।
x=-\frac{10}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{1±11}{2} যখন ± হল বিয়োগ৷ 1 থেকে 11 বাদ দিন।
x=-5
-10 কে 2 দিয়ে ভাগ করুন।
x=6 x=-5
সমীকরণটি এখন সমাধান করা হয়েছে।
x^{2}-x-30=0
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
x^{2}-x-30-\left(-30\right)=-\left(-30\right)
সমীকরণের উভয় দিকে 30 যোগ করুন।
x^{2}-x=-\left(-30\right)
-30 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
x^{2}-x=30
0 থেকে -30 বাদ দিন।
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=30+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} পেতে x টার্মের গুণাঙ্ক -1-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{1}{2}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-x+\frac{1}{4}=30+\frac{1}{4}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{1}{2} এর বর্গ করুন।
x^{2}-x+\frac{1}{4}=\frac{121}{4}
\frac{1}{4} এ 30 যোগ করুন।
\left(x-\frac{1}{2}\right)^{2}=\frac{121}{4}
x^{2}-x+\frac{1}{4} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{1}{2}=\frac{11}{2} x-\frac{1}{2}=-\frac{11}{2}
সিমপ্লিফাই।
x=6 x=-5
সমীকরণের উভয় দিকে \frac{1}{2} যোগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}