মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x^{2}-x-16=0
অসমতার সমাধান করতে, বাম দিকটিকে গুণনীয়ক করুন৷ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\left(-16\right)}}{2}
দ্বিঘাত সূত্র : \frac{-b±\sqrt{b^{2}-4ac}}{2a} ব্যবহার করে ফর্ম ax^{2}+bx+c=0 -এর সমস্ত সমীকরণ সমাধান করা যেতে পারে৷ দ্বিঘাত সূত্রে a-এর জন্য 1, b-এর জন্য -1, c-এর জন্য -16।
x=\frac{1±\sqrt{65}}{2}
গণনাটি করুন৷
x=\frac{\sqrt{65}+1}{2} x=\frac{1-\sqrt{65}}{2}
সমীকরণ x=\frac{1±\sqrt{65}}{2} সমাধান করুন যেখানে ± হল প্লাস এবং ± হল মাইনাস।
\left(x-\frac{\sqrt{65}+1}{2}\right)\left(x-\frac{1-\sqrt{65}}{2}\right)<0
প্রাপ্ত সমাধান ব্যবহার করে অসাম্যটি আবার লিখুন।
x-\frac{\sqrt{65}+1}{2}>0 x-\frac{1-\sqrt{65}}{2}<0
গুণফল নেগেটিভ হওয়ার জন্য, x-\frac{\sqrt{65}+1}{2} এবং x-\frac{1-\sqrt{65}}{2} উভয়কে বিপরীত চিহ্নের হতে হবে। x-\frac{\sqrt{65}+1}{2} পজিটিভ এবং x-\frac{1-\sqrt{65}}{2} নেভেটিভ হলে কেসটি বিবেচনা করুন।
x\in \emptyset
এটি যে কোনো প্রকৃত x -এর জন্য ব্যর্থ।
x-\frac{1-\sqrt{65}}{2}>0 x-\frac{\sqrt{65}+1}{2}<0
x-\frac{1-\sqrt{65}}{2} পজিটিভ এবং x-\frac{\sqrt{65}+1}{2} নেভেটিভ হলে কেসটি বিবেচনা করুন।
x\in \left(\frac{1-\sqrt{65}}{2},\frac{\sqrt{65}+1}{2}\right)
উভয় অসমতাকে সম্পন্ন করতে পারে এমন সমাধান হল x\in \left(\frac{1-\sqrt{65}}{2},\frac{\sqrt{65}+1}{2}\right)।
x\in \left(\frac{1-\sqrt{65}}{2},\frac{\sqrt{65}+1}{2}\right)
চূড়ান্ত সমাধানটি হল প্রাপ্ত সমাধানগুলোর ইউনিয়ন।