মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x^{2}-x+12-2x^{2}=3x+7
উভয় দিক থেকে 2x^{2} বিয়োগ করুন।
-x^{2}-x+12=3x+7
-x^{2} পেতে x^{2} এবং -2x^{2} একত্রিত করুন।
-x^{2}-x+12-3x=7
উভয় দিক থেকে 3x বিয়োগ করুন।
-x^{2}-4x+12=7
-4x পেতে -x এবং -3x একত্রিত করুন।
-x^{2}-4x+12-7=0
উভয় দিক থেকে 7 বিয়োগ করুন।
-x^{2}-4x+5=0
5 পেতে 12 থেকে 7 বাদ দিন।
a+b=-4 ab=-5=-5
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি -x^{2}+ax+bx+5 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
a=1 b=-5
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। কেবলমাত্র এই প্রকারের জোড়াটি হল সিস্টেম সমাধান।
\left(-x^{2}+x\right)+\left(-5x+5\right)
\left(-x^{2}+x\right)+\left(-5x+5\right) হিসেবে -x^{2}-4x+5 পুনরায় লিখুন৷
x\left(-x+1\right)+5\left(-x+1\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 5 ফ্যাক্টর আউট।
\left(-x+1\right)\left(x+5\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম -x+1 ফ্যাক্টর আউট করুন।
x=1 x=-5
সমীকরণের সমাধানগুলো খুঁজতে, -x+1=0 এবং x+5=0 সমাধান করুন।
x^{2}-x+12-2x^{2}=3x+7
উভয় দিক থেকে 2x^{2} বিয়োগ করুন।
-x^{2}-x+12=3x+7
-x^{2} পেতে x^{2} এবং -2x^{2} একত্রিত করুন।
-x^{2}-x+12-3x=7
উভয় দিক থেকে 3x বিয়োগ করুন।
-x^{2}-4x+12=7
-4x পেতে -x এবং -3x একত্রিত করুন।
-x^{2}-4x+12-7=0
উভয় দিক থেকে 7 বিয়োগ করুন।
-x^{2}-4x+5=0
5 পেতে 12 থেকে 7 বাদ দিন।
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 5}}{2\left(-1\right)}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য -1, b এর জন্য -4 এবং c এর জন্য 5 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 5}}{2\left(-1\right)}
-4 এর বর্গ
x=\frac{-\left(-4\right)±\sqrt{16+4\times 5}}{2\left(-1\right)}
-4 কে -1 বার গুণ করুন।
x=\frac{-\left(-4\right)±\sqrt{16+20}}{2\left(-1\right)}
4 কে 5 বার গুণ করুন।
x=\frac{-\left(-4\right)±\sqrt{36}}{2\left(-1\right)}
20 এ 16 যোগ করুন।
x=\frac{-\left(-4\right)±6}{2\left(-1\right)}
36 এর স্কোয়ার রুট নিন।
x=\frac{4±6}{2\left(-1\right)}
-4-এর বিপরীত হলো 4।
x=\frac{4±6}{-2}
2 কে -1 বার গুণ করুন।
x=\frac{10}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{4±6}{-2} যখন ± হল যোগ৷ 6 এ 4 যোগ করুন।
x=-5
10 কে -2 দিয়ে ভাগ করুন।
x=-\frac{2}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{4±6}{-2} যখন ± হল বিয়োগ৷ 4 থেকে 6 বাদ দিন।
x=1
-2 কে -2 দিয়ে ভাগ করুন।
x=-5 x=1
সমীকরণটি এখন সমাধান করা হয়েছে।
x^{2}-x+12-2x^{2}=3x+7
উভয় দিক থেকে 2x^{2} বিয়োগ করুন।
-x^{2}-x+12=3x+7
-x^{2} পেতে x^{2} এবং -2x^{2} একত্রিত করুন।
-x^{2}-x+12-3x=7
উভয় দিক থেকে 3x বিয়োগ করুন।
-x^{2}-4x+12=7
-4x পেতে -x এবং -3x একত্রিত করুন।
-x^{2}-4x=7-12
উভয় দিক থেকে 12 বিয়োগ করুন।
-x^{2}-4x=-5
-5 পেতে 7 থেকে 12 বাদ দিন।
\frac{-x^{2}-4x}{-1}=-\frac{5}{-1}
-1 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\left(-\frac{4}{-1}\right)x=-\frac{5}{-1}
-1 দিয়ে ভাগ করে -1 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}+4x=-\frac{5}{-1}
-4 কে -1 দিয়ে ভাগ করুন।
x^{2}+4x=5
-5 কে -1 দিয়ে ভাগ করুন।
x^{2}+4x+2^{2}=5+2^{2}
2 পেতে x টার্মের গুণাঙ্ক 4-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে 2-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}+4x+4=5+4
2 এর বর্গ
x^{2}+4x+4=9
4 এ 5 যোগ করুন।
\left(x+2\right)^{2}=9
x^{2}+4x+4 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x+2\right)^{2}}=\sqrt{9}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+2=3 x+2=-3
সিমপ্লিফাই।
x=1 x=-5
সমীকরণের উভয় দিক থেকে 2 বাদ দিন।