x এর জন্য সমাধান করুন
x=-3
x=21
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
x^{2}-18x-63=0
উভয় দিক থেকে 63 বিয়োগ করুন।
a+b=-18 ab=-63
সমীকরণটি সমাধান করতে, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) সূত্র ব্যবহার করে x^{2}-18x-63 গুণনীয়ক করুন। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-63 3,-21 7,-9
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -63 প্রদান করে।
1-63=-62 3-21=-18 7-9=-2
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-21 b=3
সমাধানটি হল সেই জোড়া যা -18 যোগফল প্রদান করে।
\left(x-21\right)\left(x+3\right)
প্রাপ্ত মানগুলো ব্যবহার করে গুণনীয়ক করা অভিব্যক্তি \left(x+a\right)\left(x+b\right) পুনরায় লিখুন।
x=21 x=-3
সমীকরণের সমাধানগুলো খুঁজতে, x-21=0 এবং x+3=0 সমাধান করুন।
x^{2}-18x-63=0
উভয় দিক থেকে 63 বিয়োগ করুন।
a+b=-18 ab=1\left(-63\right)=-63
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি x^{2}+ax+bx-63 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-63 3,-21 7,-9
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -63 প্রদান করে।
1-63=-62 3-21=-18 7-9=-2
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-21 b=3
সমাধানটি হল সেই জোড়া যা -18 যোগফল প্রদান করে।
\left(x^{2}-21x\right)+\left(3x-63\right)
\left(x^{2}-21x\right)+\left(3x-63\right) হিসেবে x^{2}-18x-63 পুনরায় লিখুন৷
x\left(x-21\right)+3\left(x-21\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 3 ফ্যাক্টর আউট।
\left(x-21\right)\left(x+3\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-21 ফ্যাক্টর আউট করুন।
x=21 x=-3
সমীকরণের সমাধানগুলো খুঁজতে, x-21=0 এবং x+3=0 সমাধান করুন।
x^{2}-18x=63
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x^{2}-18x-63=63-63
সমীকরণের উভয় দিক থেকে 63 বাদ দিন।
x^{2}-18x-63=0
63 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-63\right)}}{2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 1, b এর জন্য -18 এবং c এর জন্য -63 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-63\right)}}{2}
-18 এর বর্গ
x=\frac{-\left(-18\right)±\sqrt{324+252}}{2}
-4 কে -63 বার গুণ করুন।
x=\frac{-\left(-18\right)±\sqrt{576}}{2}
252 এ 324 যোগ করুন।
x=\frac{-\left(-18\right)±24}{2}
576 এর স্কোয়ার রুট নিন।
x=\frac{18±24}{2}
-18-এর বিপরীত হলো 18।
x=\frac{42}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{18±24}{2} যখন ± হল যোগ৷ 24 এ 18 যোগ করুন।
x=21
42 কে 2 দিয়ে ভাগ করুন।
x=-\frac{6}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{18±24}{2} যখন ± হল বিয়োগ৷ 18 থেকে 24 বাদ দিন।
x=-3
-6 কে 2 দিয়ে ভাগ করুন।
x=21 x=-3
সমীকরণটি এখন সমাধান করা হয়েছে।
x^{2}-18x=63
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
x^{2}-18x+\left(-9\right)^{2}=63+\left(-9\right)^{2}
-9 পেতে x টার্মের গুণাঙ্ক -18-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -9-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-18x+81=63+81
-9 এর বর্গ
x^{2}-18x+81=144
81 এ 63 যোগ করুন।
\left(x-9\right)^{2}=144
x^{2}-18x+81 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-9\right)^{2}}=\sqrt{144}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-9=12 x-9=-12
সিমপ্লিফাই।
x=21 x=-3
সমীকরণের উভয় দিকে 9 যোগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}