x এর জন্য সমাধান করুন
x=-2
x=1
x=3
x=-4
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
সমীকরণের উভয় দিককে \left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right) দিয়ে গুণ করুন।
\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-\frac{1}{2}\sqrt{5}-\frac{1}{2} এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\frac{1}{2}\sqrt{5}-\frac{1}{2} এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
\left(x^{2}+x-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
x+\frac{1}{2}\sqrt{5}+\frac{1}{2} কে x-\frac{1}{2}\sqrt{5}+\frac{1}{2} দিয়ে গুণ করতে ও পছন্দ টার্ম একত্রিত করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
\left(x^{2}+x-\frac{1}{4}\times 5+\frac{1}{4}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\sqrt{5}এর বর্গ হলো 5।
\left(x^{2}+x-\frac{5}{4}+\frac{1}{4}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-\frac{5}{4} পেতে -\frac{1}{4} এবং 5 গুণ করুন।
\left(x^{2}+x-1\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-1 পেতে -\frac{5}{4} এবং \frac{1}{4} যোগ করুন।
x^{4}+x^{3}-x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
x^{2}+x-1 কে x^{2} দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
x^{4}+x^{3}-x^{2}+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-\frac{1}{2}\sqrt{5}-\frac{1}{2} এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
x^{4}+x^{3}-x^{2}+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\frac{1}{2}\sqrt{5}-\frac{1}{2} এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
x+\frac{1}{2}\sqrt{5}+\frac{1}{2} কে x-\frac{1}{2}\sqrt{5}+\frac{1}{2} দিয়ে গুণ করতে ও পছন্দ টার্ম একত্রিত করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-\frac{1}{4}\times 5+\frac{1}{4}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\sqrt{5}এর বর্গ হলো 5।
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-\frac{5}{4}+\frac{1}{4}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-\frac{5}{4} পেতে -\frac{1}{4} এবং 5 গুণ করুন।
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-1\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-1 পেতে -\frac{5}{4} এবং \frac{1}{4} যোগ করুন।
x^{4}+x^{3}-x^{2}+x^{3}+x^{2}-x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
x^{2}+x-1 কে x দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
x^{4}+2x^{3}-x^{2}+x^{2}-x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
2x^{3} পেতে x^{3} এবং x^{3} একত্রিত করুন।
x^{4}+2x^{3}-x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
0 পেতে -x^{2} এবং x^{2} একত্রিত করুন।
x^{4}+2x^{3}-x+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-\frac{1}{2}\sqrt{5}-\frac{1}{2} এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
x^{4}+2x^{3}-x+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\frac{1}{2}\sqrt{5}-\frac{1}{2} এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
x^{4}+2x^{3}-x+x^{2}+x-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
x+\frac{1}{2}\sqrt{5}+\frac{1}{2} কে x-\frac{1}{2}\sqrt{5}+\frac{1}{2} দিয়ে গুণ করতে ও পছন্দ টার্ম একত্রিত করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
x^{4}+2x^{3}-x+x^{2}+x-\frac{1}{4}\times 5+\frac{1}{4}+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\sqrt{5}এর বর্গ হলো 5।
x^{4}+2x^{3}-x+x^{2}+x-\frac{5}{4}+\frac{1}{4}+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-\frac{5}{4} পেতে -\frac{1}{4} এবং 5 গুণ করুন।
x^{4}+2x^{3}-x+x^{2}+x-1+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-1 পেতে -\frac{5}{4} এবং \frac{1}{4} যোগ করুন।
x^{4}+2x^{3}+x^{2}-1+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
0 পেতে -x এবং x একত্রিত করুন।
x^{4}+2x^{3}+x^{2}+10=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
10 পেতে -1 এবং 11 যোগ করুন।
x^{4}+2x^{3}+x^{2}+10=14\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
-\frac{1}{2}\sqrt{5}-\frac{1}{2} এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
x^{4}+2x^{3}+x^{2}+10=14\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)
\frac{1}{2}\sqrt{5}-\frac{1}{2} এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
x^{4}+2x^{3}+x^{2}+10=\left(14x+7\sqrt{5}+7\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)
14 কে x+\frac{1}{2}\sqrt{5}+\frac{1}{2} দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-\frac{7}{2}\left(\sqrt{5}\right)^{2}+\frac{7}{2}
14x+7\sqrt{5}+7 কে x-\frac{1}{2}\sqrt{5}+\frac{1}{2} দিয়ে গুণ করতে ও পছন্দ টার্ম একত্রিত করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-\frac{7}{2}\times 5+\frac{7}{2}
\sqrt{5}এর বর্গ হলো 5।
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-\frac{35}{2}+\frac{7}{2}
-\frac{35}{2} পেতে -\frac{7}{2} এবং 5 গুণ করুন।
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-14
-14 পেতে -\frac{35}{2} এবং \frac{7}{2} যোগ করুন।
x^{4}+2x^{3}+x^{2}+10-14x^{2}=14x-14
উভয় দিক থেকে 14x^{2} বিয়োগ করুন।
x^{4}+2x^{3}-13x^{2}+10=14x-14
-13x^{2} পেতে x^{2} এবং -14x^{2} একত্রিত করুন।
x^{4}+2x^{3}-13x^{2}+10-14x=-14
উভয় দিক থেকে 14x বিয়োগ করুন।
x^{4}+2x^{3}-13x^{2}+10-14x+14=0
উভয় সাইডে 14 যোগ করুন৷
x^{4}+2x^{3}-13x^{2}+24-14x=0
24 পেতে 10 এবং 14 যোগ করুন।
x^{4}+2x^{3}-13x^{2}-14x+24=0
সমীকরণটিকে আদর্শ রূপে দেখাতে পুনরায় সাজান। টার্মগুলোকে সর্বোচ্চ থেকে নিম্নতর পাওয়ারের ভিত্তিতে বসান।
±24,±12,±8,±6,±4,±3,±2,±1
যুক্তিসঙ্গত মূল উপপাদ্য অনুসারে, একটি বহুপদের সমস্ত যুক্তিসঙ্গত মূল ফর্ম \frac{p}{q}-এ রয়েছে, যেখানে p ধ্রুবক টার্ম 24-কে ভাগ করে এবং q সামনের গুণাঙ্ক 1-কে ভাগ করে৷ সমস্ত প্রার্থীকে তালিকাভুক্ত করুন \frac{p}{q}।
x=1
সর্বমোট মান দ্বারা ক্ষুদ্রতম থেকে শুরু করে সমস্ত পূর্ণসংখ্যার মানগুলো ব্যবহার করে এমন একটি রুট সন্ধান করুন। যদি কোনও পূর্ণসংখ্যার রুট না পাওয়া যায় তবে ভগ্নাংশগুলো ব্যবহার করে দেখুন।
x^{3}+3x^{2}-10x-24=0
ফ্যাক্টর উপপাদ্য অনুসারে, x-k হল প্রতিটি মূল k-এর জন্য বহুপদের একটি ফ্যাক্টর৷ x^{3}+3x^{2}-10x-24 পেতে x^{4}+2x^{3}-13x^{2}-14x+24 কে x-1 দিয়ে ভাগ করুন। এই সমীকরণটি সমাধান করুন যেখানে ফলাফল 0-এর সমান।
±24,±12,±8,±6,±4,±3,±2,±1
যুক্তিসঙ্গত মূল উপপাদ্য অনুসারে, একটি বহুপদের সমস্ত যুক্তিসঙ্গত মূল ফর্ম \frac{p}{q}-এ রয়েছে, যেখানে p ধ্রুবক টার্ম -24-কে ভাগ করে এবং q সামনের গুণাঙ্ক 1-কে ভাগ করে৷ সমস্ত প্রার্থীকে তালিকাভুক্ত করুন \frac{p}{q}।
x=-2
সর্বমোট মান দ্বারা ক্ষুদ্রতম থেকে শুরু করে সমস্ত পূর্ণসংখ্যার মানগুলো ব্যবহার করে এমন একটি রুট সন্ধান করুন। যদি কোনও পূর্ণসংখ্যার রুট না পাওয়া যায় তবে ভগ্নাংশগুলো ব্যবহার করে দেখুন।
x^{2}+x-12=0
ফ্যাক্টর উপপাদ্য অনুসারে, x-k হল প্রতিটি মূল k-এর জন্য বহুপদের একটি ফ্যাক্টর৷ x^{2}+x-12 পেতে x^{3}+3x^{2}-10x-24 কে x+2 দিয়ে ভাগ করুন। এই সমীকরণটি সমাধান করুন যেখানে ফলাফল 0-এর সমান।
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-12\right)}}{2}
দ্বিঘাত সূত্র : \frac{-b±\sqrt{b^{2}-4ac}}{2a} ব্যবহার করে ফর্ম ax^{2}+bx+c=0 -এর সমস্ত সমীকরণ সমাধান করা যেতে পারে৷ দ্বিঘাত সূত্রে a-এর জন্য 1, b-এর জন্য 1, c-এর জন্য -12।
x=\frac{-1±7}{2}
গণনাটি করুন৷
x=-4 x=3
সমীকরণ x^{2}+x-12=0 সমাধান করুন যেখানে ± হল প্লাস এবং ± হল মাইনাস।
x=1 x=-2 x=-4 x=3
সমস্ত খুঁজে পাওয়া সমাধান তালিকাভুক্ত করুন৷
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}