মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x^{2}+14x-28=0
অসমতার সমাধান করতে, বাম দিকটিকে গুণনীয়ক করুন৷ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-14±\sqrt{14^{2}-4\times 1\left(-28\right)}}{2}
দ্বিঘাত সূত্র : \frac{-b±\sqrt{b^{2}-4ac}}{2a} ব্যবহার করে ফর্ম ax^{2}+bx+c=0 -এর সমস্ত সমীকরণ সমাধান করা যেতে পারে৷ দ্বিঘাত সূত্রে a-এর জন্য 1, b-এর জন্য 14, c-এর জন্য -28।
x=\frac{-14±2\sqrt{77}}{2}
গণনাটি করুন৷
x=\sqrt{77}-7 x=-\sqrt{77}-7
সমীকরণ x=\frac{-14±2\sqrt{77}}{2} সমাধান করুন যেখানে ± হল প্লাস এবং ± হল মাইনাস।
\left(x-\left(\sqrt{77}-7\right)\right)\left(x-\left(-\sqrt{77}-7\right)\right)\leq 0
প্রাপ্ত সমাধান ব্যবহার করে অসাম্যটি আবার লিখুন।
x-\left(\sqrt{77}-7\right)\geq 0 x-\left(-\sqrt{77}-7\right)\leq 0
গুণফল ≤0 হওয়ার জন্য, x-\left(\sqrt{77}-7\right) এবং x-\left(-\sqrt{77}-7\right)-এর একটি মান ≥0 এবং অন্যটি ≤0 হতে হবে। Consider the case when x-\left(\sqrt{77}-7\right)\geq 0 and x-\left(-\sqrt{77}-7\right)\leq 0.
x\in \emptyset
এটি যে কোনো প্রকৃত x -এর জন্য ব্যর্থ।
x-\left(-\sqrt{77}-7\right)\geq 0 x-\left(\sqrt{77}-7\right)\leq 0
Consider the case when x-\left(\sqrt{77}-7\right)\leq 0 and x-\left(-\sqrt{77}-7\right)\geq 0.
x\in \begin{bmatrix}-\left(\sqrt{77}+7\right),\sqrt{77}-7\end{bmatrix}
উভয় অসমতাকে সম্পন্ন করতে পারে এমন সমাধান হল x\in \left[-\left(\sqrt{77}+7\right),\sqrt{77}-7\right]।
x\in \begin{bmatrix}-\sqrt{77}-7,\sqrt{77}-7\end{bmatrix}
চূড়ান্ত সমাধানটি হল প্রাপ্ত সমাধানগুলোর ইউনিয়ন।