মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

a+b=14 ab=45
সমীকরণটি সমাধান করতে, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) সূত্র ব্যবহার করে x^{2}+14x+45 গুণনীয়ক করুন। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,45 3,15 5,9
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ধনাত্মক, তাই a এবং b উভয়ই ধনাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 45 প্রদান করে।
1+45=46 3+15=18 5+9=14
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=5 b=9
সমাধানটি হল সেই জোড়া যা 14 যোগফল প্রদান করে।
\left(x+5\right)\left(x+9\right)
প্রাপ্ত মানগুলো ব্যবহার করে গুণনীয়ক করা অভিব্যক্তি \left(x+a\right)\left(x+b\right) পুনরায় লিখুন।
x=-5 x=-9
সমীকরণের সমাধানগুলো খুঁজতে, x+5=0 এবং x+9=0 সমাধান করুন।
a+b=14 ab=1\times 45=45
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি x^{2}+ax+bx+45 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,45 3,15 5,9
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ধনাত্মক, তাই a এবং b উভয়ই ধনাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 45 প্রদান করে।
1+45=46 3+15=18 5+9=14
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=5 b=9
সমাধানটি হল সেই জোড়া যা 14 যোগফল প্রদান করে।
\left(x^{2}+5x\right)+\left(9x+45\right)
\left(x^{2}+5x\right)+\left(9x+45\right) হিসেবে x^{2}+14x+45 পুনরায় লিখুন৷
x\left(x+5\right)+9\left(x+5\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 9 ফ্যাক্টর আউট।
\left(x+5\right)\left(x+9\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x+5 ফ্যাক্টর আউট করুন।
x=-5 x=-9
সমীকরণের সমাধানগুলো খুঁজতে, x+5=0 এবং x+9=0 সমাধান করুন।
x^{2}+14x+45=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-14±\sqrt{14^{2}-4\times 45}}{2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 1, b এর জন্য 14 এবং c এর জন্য 45 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-14±\sqrt{196-4\times 45}}{2}
14 এর বর্গ
x=\frac{-14±\sqrt{196-180}}{2}
-4 কে 45 বার গুণ করুন।
x=\frac{-14±\sqrt{16}}{2}
-180 এ 196 যোগ করুন।
x=\frac{-14±4}{2}
16 এর স্কোয়ার রুট নিন।
x=-\frac{10}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{-14±4}{2} যখন ± হল যোগ৷ 4 এ -14 যোগ করুন।
x=-5
-10 কে 2 দিয়ে ভাগ করুন।
x=-\frac{18}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{-14±4}{2} যখন ± হল বিয়োগ৷ -14 থেকে 4 বাদ দিন।
x=-9
-18 কে 2 দিয়ে ভাগ করুন।
x=-5 x=-9
সমীকরণটি এখন সমাধান করা হয়েছে।
x^{2}+14x+45=0
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
x^{2}+14x+45-45=-45
সমীকরণের উভয় দিক থেকে 45 বাদ দিন।
x^{2}+14x=-45
45 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
x^{2}+14x+7^{2}=-45+7^{2}
7 পেতে x টার্মের গুণাঙ্ক 14-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে 7-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}+14x+49=-45+49
7 এর বর্গ
x^{2}+14x+49=4
49 এ -45 যোগ করুন।
\left(x+7\right)^{2}=4
x^{2}+14x+49 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x+7\right)^{2}}=\sqrt{4}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+7=2 x+7=-2
সিমপ্লিফাই।
x=-5 x=-9
সমীকরণের উভয় দিক থেকে 7 বাদ দিন।