x, y এর জন্য সমাধান করুন
x = \frac{12}{5} = 2\frac{2}{5} = 2.4
y = \frac{24}{5} = 4\frac{4}{5} = 4.8
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
9x-2y=12
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
x+2y=12,9x-2y=12
সাবসটিট্যিশন ব্যবহার করে এক জোড়া সমীকরণ সমাধান করতে, ভেরিয়েবলগুলোর একটির জন্য একটি সমীকরণের সমাধান করুন। তারপর অন্য সমীকরণে সেই ভেরিয়েবলের জন্য ফলাফল বিপরীত করে দিন।
x+2y=12
সমীকরণগুলোর মধ্যে একটি বেছে নিন এবং সমান চিহ্নের বাম দিকের x পৃথক করে x-এর জন্য সমাধান করুন।
x=-2y+12
সমীকরণের উভয় দিক থেকে 2y বাদ দিন।
9\left(-2y+12\right)-2y=12
অন্য সমীকরণ 9x-2y=12 এ x এর জন্য -2y+12 বিপরীত করু ন।
-18y+108-2y=12
9 কে -2y+12 বার গুণ করুন।
-20y+108=12
-2y এ -18y যোগ করুন।
-20y=-96
সমীকরণের উভয় দিক থেকে 108 বাদ দিন।
y=\frac{24}{5}
-20 দিয়ে উভয় দিককে ভাগ করুন।
x=-2\times \frac{24}{5}+12
x=-2y+12 এ y এর জন্য পরিবর্ত হিসাবে \frac{24}{5} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
x=-\frac{48}{5}+12
-2 কে \frac{24}{5} বার গুণ করুন।
x=\frac{12}{5}
-\frac{48}{5} এ 12 যোগ করুন।
x=\frac{12}{5},y=\frac{24}{5}
সিস্টেম এখন সমাধান করা হয়েছে।
9x-2y=12
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
x+2y=12,9x-2y=12
সমীকরণগুলোকে স্ট্যান্ডার্ড আকারে রাখুন এবং সমীকরণের সিস্টেমের সমাধানের জন্য ম্যাট্রিস ব্যবহার করুন।
\left(\begin{matrix}1&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\12\end{matrix}\right)
ম্যাট্রিক্স ফর্মে সমীকরণগুলো লিখুন।
inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}1&2\\9&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
\left(\begin{matrix}1&2\\9&-2\end{matrix}\right) -এর বিপরীত ম্যাট্রিক্স দ্বারা সমীকরণটির বামে গুণ করুন৷
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
একটি ম্যাট্রিক্সের গুণফল এবং এর বিপরীত হল স্বরূপ ম্যাট্রিক্স।
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\9&-2\end{matrix}\right))\left(\begin{matrix}12\\12\end{matrix}\right)
সমান চিহ্নের বাম দিকের মেট্রিক্সকে গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-2\times 9}&-\frac{2}{-2-2\times 9}\\-\frac{9}{-2-2\times 9}&\frac{1}{-2-2\times 9}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
2\times 2 ম্যাট্রিক্সের জন্য \left(\begin{matrix}a&b\\c&d\end{matrix}\right), উল্টানো ম্যাট্রিক্স হল \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), তাই ম্যাট্রিক্সের সমীকরণ ম্যাট্রিক্সের গুণের সমস্যা হিসাবে আবার লেখা যেতে পারে।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}&\frac{1}{10}\\\frac{9}{20}&-\frac{1}{20}\end{matrix}\right)\left(\begin{matrix}12\\12\end{matrix}\right)
পাটিগণিত করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{10}\times 12+\frac{1}{10}\times 12\\\frac{9}{20}\times 12-\frac{1}{20}\times 12\end{matrix}\right)
মেট্রিক্স গুণ করুন।
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{5}\\\frac{24}{5}\end{matrix}\right)
পাটিগণিত করুন।
x=\frac{12}{5},y=\frac{24}{5}
ম্যাট্রিক্স এলিমেন্ট x এবং y বের করুন।
9x-2y=12
দ্বিতীয় সমীকরণটি সরলীকরণ করুন। সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
x+2y=12,9x-2y=12
এলিমিনেশন দ্বারা সমাধান করার জন্য, ভেরিয়েবলগুলোর একটির কোফিসিয়েন্টগুলো উভয় সমীকরণে একই হবে যাতে একটি সমীকরণ থেকে অন্য সমীকরণ বাদ দেওয়ার ভেরিয়েবল বাতিল না যায়।
9x+9\times 2y=9\times 12,9x-2y=12
x এবং 9x সমান করতে, প্রথম সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 9 দিয়ে গুণ করুন এবং দ্বিতীয় সমীকরণের প্রতিটি পাশে থাকা সমস্ত টার্মকে 1 দিয়ে গুণ করুন।
9x+18y=108,9x-2y=12
সিমপ্লিফাই।
9x-9x+18y+2y=108-12
সমান চিহ্নের প্রতিটি পাশে টার্ম বাদ দিয়ে 9x+18y=108 থেকে 9x-2y=12 বাদ দিন।
18y+2y=108-12
-9x এ 9x যোগ করুন। টার্ম 9x এবং -9x বাতিল, শুধুমাত্র একটি ভ্যারিয়েবল সহ একটি সমীকরণ বাতিল করে দিন যা সমাধান করা যেতে পারে।
20y=108-12
2y এ 18y যোগ করুন।
20y=96
-12 এ 108 যোগ করুন।
y=\frac{24}{5}
20 দিয়ে উভয় দিককে ভাগ করুন।
9x-2\times \frac{24}{5}=12
9x-2y=12 এ y এর জন্য পরিবর্ত হিসাবে \frac{24}{5} ব্যবহার করুন। কারণ ফলাফলের সমীকরণে একটি ভেরিয়েবল রয়েছে, আপনি x এর জন্য সরাসরি সমাধান করতে পারেন।
9x-\frac{48}{5}=12
-2 কে \frac{24}{5} বার গুণ করুন।
9x=\frac{108}{5}
সমীকরণের উভয় দিকে \frac{48}{5} যোগ করুন।
x=\frac{12}{5}
9 দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{12}{5},y=\frac{24}{5}
সিস্টেম এখন সমাধান করা হয়েছে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}