ভাঙা
\frac{\left(2p-9\right)\left(2p-1\right)}{4}
মূল্যায়ন করুন
p^{2}-5p+\frac{9}{4}
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
\frac{4p^{2}-20p+9}{4}
ফ্যাক্টর আউট \frac{1}{4}।
a+b=-20 ab=4\times 9=36
বিবেচনা করুন 4p^{2}-20p+9। গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি 4p^{2}+ap+bp+9 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ঋণাত্মক, তাই a এবং b উভয়ই ঋণাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 36 প্রদান করে।
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-18 b=-2
সমাধানটি হল সেই জোড়া যা -20 যোগফল প্রদান করে।
\left(4p^{2}-18p\right)+\left(-2p+9\right)
\left(4p^{2}-18p\right)+\left(-2p+9\right) হিসেবে 4p^{2}-20p+9 পুনরায় লিখুন৷
2p\left(2p-9\right)-\left(2p-9\right)
প্রথম গোষ্ঠীতে 2p এবং দ্বিতীয় গোষ্ঠীতে -1 ফ্যাক্টর আউট।
\left(2p-9\right)\left(2p-1\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম 2p-9 ফ্যাক্টর আউট করুন।
\frac{\left(2p-9\right)\left(2p-1\right)}{4}
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}