m এর জন্য সমাধান করুন
m\in \mathrm{R}
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
m^{2}-4m+8=0
অসমতার সমাধান করতে, বাম দিকটিকে গুণনীয়ক করুন৷ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
m=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\times 8}}{2}
দ্বিঘাত সূত্র : \frac{-b±\sqrt{b^{2}-4ac}}{2a} ব্যবহার করে ফর্ম ax^{2}+bx+c=0 -এর সমস্ত সমীকরণ সমাধান করা যেতে পারে৷ দ্বিঘাত সূত্রে a-এর জন্য 1, b-এর জন্য -4, c-এর জন্য 8।
m=\frac{4±\sqrt{-16}}{2}
গণনাটি করুন৷
0^{2}-4\times 0+8=8
যেহেতু নেগেটিভ সংখ্যার বর্গ মূল প্রকৃত ক্ষেত্রে নির্ধারিত করা হয়নি তাই কোনও সমাধান নেই৷ প্ররাশি m^{2}-4m+8-এর যেকোনও m-এর জন্য একই চিহ্ন আছে৷ চিহ্নটি নির্ধারণ করতে, m=0-এর জন্য প্ররাশির মান গণনা করুন।
m\in \mathrm{R}
প্ররাশি m^{2}-4m+8-এর মান সর্বদা ইতিবাচক হয়৷ m\in \mathrm{R}-এর জন্য অসমতা ধরে নেওয়া হয়।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}