মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

a+b=2 ab=1\times 1=1
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি m^{2}+am+bm+1 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
a=1 b=1
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ধনাত্মক, তাই a এবং b উভয়ই ধনাত্মক হয়। কেবলমাত্র এই প্রকারের জোড়াটি হল সিস্টেম সমাধান।
\left(m^{2}+m\right)+\left(m+1\right)
\left(m^{2}+m\right)+\left(m+1\right) হিসেবে m^{2}+2m+1 পুনরায় লিখুন৷
m\left(m+1\right)+m+1
m^{2}+m-এ m ফ্যাক্টর আউট করুন।
\left(m+1\right)\left(m+1\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম m+1 ফ্যাক্টর আউট করুন।
\left(m+1\right)^{2}
দুই সংখ্যা বিশিষ্ট বর্গ আবার লিখুন।
factor(m^{2}+2m+1)
এই ত্রিপদ সংখ্যার ত্রিপদ স্কয়ারের রূপ আছে, সম্ভবত সাধারণ ফ্যাক্টর দ্বারা গুণ করা। ত্রিপদ স্কয়ারগুলো লিডিং ও ট্রেইলিং টার্মের স্কয়ার রুট বের করে ভাগ করা যেতে পারে।
\left(m+1\right)^{2}
ত্রিপদ স্কয়ার হল দ্বিপদের স্কয়ার যা হল লিডিং ও ট্রেইলিং টার্মের যোগফল ও বিয়োগফল, এর সঙ্গে রয়েছে ত্রিপদ স্কয়ারের মাঝের টার্মের চিহ্ন দ্বারা নির্ধারিত চিহ্ন।
m^{2}+2m+1=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
m=\frac{-2±\sqrt{2^{2}-4}}{2}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
m=\frac{-2±\sqrt{4-4}}{2}
2 এর বর্গ
m=\frac{-2±\sqrt{0}}{2}
-4 এ 4 যোগ করুন।
m=\frac{-2±0}{2}
0 এর স্কোয়ার রুট নিন।
m^{2}+2m+1=\left(m-\left(-1\right)\right)\left(m-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প -1 ও x_{2} এর ক্ষেত্রে বিকল্প -1
m^{2}+2m+1=\left(m+1\right)\left(m+1\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷