ভাঙা
\left(x-1\right)\left(3x-5\right)\left(4x+5\right)
মূল্যায়ন করুন
\left(x-1\right)\left(3x-5\right)\left(4x+5\right)
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
\left(3x-5\right)\left(4x^{2}+x-5\right)
যুক্তিসঙ্গত মূল উপপাদ্য অনুসারে, একটি বহুপদের সমস্ত যুক্তিসঙ্গত মূল ফর্ম \frac{p}{q}-এ রয়েছে, যেখানে p ধ্রুবক টার্ম 25-কে ভাগ করে এবং q সামনের গুণাঙ্ক 12-কে ভাগ করে৷ এমন একটি মূল হল \frac{5}{3}। 3x-5 দ্বারা এটি ভাগ করে বহুপদটি গুণনীয়ক করুন।
a+b=1 ab=4\left(-5\right)=-20
বিবেচনা করুন 4x^{2}+x-5। গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি 4x^{2}+ax+bx-5 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,20 -2,10 -4,5
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -20 প্রদান করে।
-1+20=19 -2+10=8 -4+5=1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-4 b=5
সমাধানটি হল সেই জোড়া যা 1 যোগফল প্রদান করে।
\left(4x^{2}-4x\right)+\left(5x-5\right)
\left(4x^{2}-4x\right)+\left(5x-5\right) হিসেবে 4x^{2}+x-5 পুনরায় লিখুন৷
4x\left(x-1\right)+5\left(x-1\right)
প্রথম গোষ্ঠীতে 4x এবং দ্বিতীয় গোষ্ঠীতে 5 ফ্যাক্টর আউট।
\left(x-1\right)\left(4x+5\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-1 ফ্যাক্টর আউট করুন।
\left(3x-5\right)\left(x-1\right)\left(4x+5\right)
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}