f এর জন্য সমাধান করুন (complex solution)
\left\{\begin{matrix}\\f=0\text{, }&\text{unconditionally}\\f\in \mathrm{C}\text{, }&x=\frac{9}{26}\end{matrix}\right.
x এর জন্য সমাধান করুন (complex solution)
\left\{\begin{matrix}\\x=\frac{9}{26}\text{, }&\text{unconditionally}\\x\in \mathrm{C}\text{, }&f=0\end{matrix}\right.
f এর জন্য সমাধান করুন
\left\{\begin{matrix}\\f=0\text{, }&\text{unconditionally}\\f\in \mathrm{R}\text{, }&x=\frac{9}{26}\end{matrix}\right.
x এর জন্য সমাধান করুন
\left\{\begin{matrix}\\x=\frac{9}{26}\text{, }&\text{unconditionally}\\x\in \mathrm{R}\text{, }&f=0\end{matrix}\right.
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
f কে x+2 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
f কে x-1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
fx+2f-fx+f=\frac{26}{3}fx
fx-f এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
2f+f=\frac{26}{3}fx
0 পেতে fx এবং -fx একত্রিত করুন।
3f=\frac{26}{3}fx
3f পেতে 2f এবং f একত্রিত করুন।
3f-\frac{26}{3}fx=0
উভয় দিক থেকে \frac{26}{3}fx বিয়োগ করুন।
\left(3-\frac{26}{3}x\right)f=0
f আছে এমন সমস্ত টার্ম একত্রিত করুন।
\left(-\frac{26x}{3}+3\right)f=0
সমীকরণটি এখন স্ট্যান্ডার্ড ফর্মে রয়েছে।
f=0
0 কে 3-\frac{26}{3}x দিয়ে ভাগ করুন।
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
f কে x+2 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
f কে x-1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
fx+2f-fx+f=\frac{26}{3}fx
fx-f এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
2f+f=\frac{26}{3}fx
0 পেতে fx এবং -fx একত্রিত করুন।
3f=\frac{26}{3}fx
3f পেতে 2f এবং f একত্রিত করুন।
\frac{26}{3}fx=3f
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
\frac{26f}{3}x=3f
সমীকরণটি এখন স্ট্যান্ডার্ড ফর্মে রয়েছে।
\frac{3\times \frac{26f}{3}x}{26f}=\frac{3\times 3f}{26f}
\frac{26}{3}f দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{3\times 3f}{26f}
\frac{26}{3}f দিয়ে ভাগ করে \frac{26}{3}f দিয়ে গুণ করে আগের অবস্থায় আনুন।
x=\frac{9}{26}
3f কে \frac{26}{3}f দিয়ে ভাগ করুন।
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
f কে x+2 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
f কে x-1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
fx+2f-fx+f=\frac{26}{3}fx
fx-f এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
2f+f=\frac{26}{3}fx
0 পেতে fx এবং -fx একত্রিত করুন।
3f=\frac{26}{3}fx
3f পেতে 2f এবং f একত্রিত করুন।
3f-\frac{26}{3}fx=0
উভয় দিক থেকে \frac{26}{3}fx বিয়োগ করুন।
\left(3-\frac{26}{3}x\right)f=0
f আছে এমন সমস্ত টার্ম একত্রিত করুন।
\left(-\frac{26x}{3}+3\right)f=0
সমীকরণটি এখন স্ট্যান্ডার্ড ফর্মে রয়েছে।
f=0
0 কে 3-\frac{26}{3}x দিয়ে ভাগ করুন।
fx+2f-f\left(x-1\right)=\frac{26}{3}fx
f কে x+2 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
fx+2f-\left(fx-f\right)=\frac{26}{3}fx
f কে x-1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
fx+2f-fx+f=\frac{26}{3}fx
fx-f এর বিপরীত সন্ধান করতে, প্রতিটি টার্মের বিপরীত সন্ধান করুন৷
2f+f=\frac{26}{3}fx
0 পেতে fx এবং -fx একত্রিত করুন।
3f=\frac{26}{3}fx
3f পেতে 2f এবং f একত্রিত করুন।
\frac{26}{3}fx=3f
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
\frac{26f}{3}x=3f
সমীকরণটি এখন স্ট্যান্ডার্ড ফর্মে রয়েছে।
\frac{3\times \frac{26f}{3}x}{26f}=\frac{3\times 3f}{26f}
\frac{26}{3}f দিয়ে উভয় দিককে ভাগ করুন।
x=\frac{3\times 3f}{26f}
\frac{26}{3}f দিয়ে ভাগ করে \frac{26}{3}f দিয়ে গুণ করে আগের অবস্থায় আনুন।
x=\frac{9}{26}
3f কে \frac{26}{3}f দিয়ে ভাগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}