f এর জন্য সমাধান করুন
f=-\frac{x}{-2x^{2}+5x-1}
x\neq 0\text{ and }x\neq \frac{\sqrt{17}+5}{4}\text{ and }x\neq \frac{5-\sqrt{17}}{4}
x এর জন্য সমাধান করুন (complex solution)
x=-\frac{\sqrt{17f^{2}+10f+1}-5f-1}{4f}
x=\frac{\sqrt{17f^{2}+10f+1}+5f+1}{4f}\text{, }f\neq 0
x এর জন্য সমাধান করুন
x=-\frac{\sqrt{17f^{2}+10f+1}-5f-1}{4f}
x=\frac{\sqrt{17f^{2}+10f+1}+5f+1}{4f}\text{, }f\leq \frac{-2\sqrt{2}-5}{17}\text{ or }\left(f\neq 0\text{ and }f\geq \frac{2\sqrt{2}-5}{17}\right)
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
\frac{1}{f}x=2x^{2}-5x+1
টার্মগুলো আবার ক্রমান্বয়ে সাজান।
1x=2x^{2}f-5xf+f
ভ্যারিয়েবল f 0-এর সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে f দিয়ে গুণ করুন।
2x^{2}f-5xf+f=1x
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
2fx^{2}-5fx+f=x
টার্মগুলো আবার ক্রমান্বয়ে সাজান।
\left(2x^{2}-5x+1\right)f=x
f আছে এমন সমস্ত টার্ম একত্রিত করুন।
\frac{\left(2x^{2}-5x+1\right)f}{2x^{2}-5x+1}=\frac{x}{2x^{2}-5x+1}
2x^{2}-5x+1 দিয়ে উভয় দিককে ভাগ করুন।
f=\frac{x}{2x^{2}-5x+1}
2x^{2}-5x+1 দিয়ে ভাগ করে 2x^{2}-5x+1 দিয়ে গুণ করে আগের অবস্থায় আনুন।
f=\frac{x}{2x^{2}-5x+1}\text{, }f\neq 0
ভ্যারিয়েবল f 0-এর সমান হতে পারে না৷
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}