মূল বিষয়বস্তুতে এড়িয়ে যান
a এর জন্য সমাধান করুন
Tick mark Image
b এর জন্য সমাধান করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
সমীকরণের উভয় দিককে \left(x^{2}+c\right)^{2} দিয়ে গুণ করুন।
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
\left(x^{2}+c\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যবহার করুন৷
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
কোনো সংখ্যার পাওয়ার অন্য পাওয়ারে বাড়াতে এক্সপোনেন্টগুলোকে গুণ করুন। 4 পেতে 2 এবং 2 গুণ করুন৷
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
\frac{\mathrm{d}}{\mathrm{d}x}(f)x কে x^{4}+2x^{2}c+c^{2} দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
\left(-a\right)x^{2}+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+2bx
উভয় সাইডে 2bx যোগ করুন৷
-ax^{2}+ac=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
টার্মগুলো আবার ক্রমান্বয়ে সাজান।
\left(-x^{2}+c\right)a=x^{5}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2cx^{3}\frac{\mathrm{d}}{\mathrm{d}x}(f)+xc^{2}\frac{\mathrm{d}}{\mathrm{d}x}(f)+2bx
a আছে এমন সমস্ত টার্ম একত্রিত করুন।
\left(c-x^{2}\right)a=2bx
সমীকরণটি এখন স্ট্যান্ডার্ড ফর্মে রয়েছে।
\frac{\left(c-x^{2}\right)a}{c-x^{2}}=\frac{2bx}{c-x^{2}}
-x^{2}+c দিয়ে উভয় দিককে ভাগ করুন।
a=\frac{2bx}{c-x^{2}}
-x^{2}+c দিয়ে ভাগ করে -x^{2}+c দিয়ে গুণ করে আগের অবস্থায় আনুন।
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{2}+c\right)^{2}=\left(-a\right)x^{2}-2bx+ac
সমীকরণের উভয় দিককে \left(x^{2}+c\right)^{2} দিয়ে গুণ করুন।
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(\left(x^{2}\right)^{2}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
\left(x^{2}+c\right)^{2} প্রসারিত করতে বাইনোমিয়াল উপপাদ্য \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ব্যবহার করুন৷
\frac{\mathrm{d}}{\mathrm{d}x}(f)x\left(x^{4}+2x^{2}c+c^{2}\right)=\left(-a\right)x^{2}-2bx+ac
কোনো সংখ্যার পাওয়ার অন্য পাওয়ারে বাড়াতে এক্সপোনেন্টগুলোকে গুণ করুন। 4 পেতে 2 এবং 2 গুণ করুন৷
\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}=\left(-a\right)x^{2}-2bx+ac
\frac{\mathrm{d}}{\mathrm{d}x}(f)x কে x^{4}+2x^{2}c+c^{2} দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
\left(-a\right)x^{2}-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
-2bx+ac=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}
উভয় দিক থেকে \left(-a\right)x^{2} বিয়োগ করুন।
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}-\left(-a\right)x^{2}-ac
উভয় দিক থেকে ac বিয়োগ করুন।
-2bx=\frac{\mathrm{d}}{\mathrm{d}x}(f)x^{5}+2\frac{\mathrm{d}}{\mathrm{d}x}(f)cx^{3}+\frac{\mathrm{d}}{\mathrm{d}x}(f)xc^{2}+ax^{2}-ac
1 পেতে -1 এবং -1 গুণ করুন।
\left(-2x\right)b=ax^{2}-ac
সমীকরণটি এখন স্ট্যান্ডার্ড ফর্মে রয়েছে।
\frac{\left(-2x\right)b}{-2x}=\frac{a\left(x^{2}-c\right)}{-2x}
-2x দিয়ে উভয় দিককে ভাগ করুন।
b=\frac{a\left(x^{2}-c\right)}{-2x}
-2x দিয়ে ভাগ করে -2x দিয়ে গুণ করে আগের অবস্থায় আনুন।
b=-\frac{ax}{2}+\frac{ac}{2x}
a\left(x^{2}-c\right) কে -2x দিয়ে ভাগ করুন।