ভাঙা
\left(a^{2}+4\right)\left(a-2\right)^{3}
মূল্যায়ন করুন
\left(a^{2}+4\right)\left(a-2\right)^{3}
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
a^{5}-6a^{4}+16a^{3}-32a^{2}+48a-32=0
এক্সপ্রেশন ফ্যাক্টর করতে, সমীকরণটি সমাধান করুন যেখানে এটি 0-এর সমান।
±32,±16,±8,±4,±2,±1
যুক্তিসঙ্গত মূল উপপাদ্য অনুসারে, একটি বহুপদের সমস্ত যুক্তিসঙ্গত মূল ফর্ম \frac{p}{q}-এ রয়েছে, যেখানে p ধ্রুবক টার্ম -32-কে ভাগ করে এবং q সামনের গুণাঙ্ক 1-কে ভাগ করে৷ সমস্ত প্রার্থীকে তালিকাভুক্ত করুন \frac{p}{q}।
a=2
সর্বমোট মান দ্বারা ক্ষুদ্রতম থেকে শুরু করে সমস্ত পূর্ণসংখ্যার মানগুলো ব্যবহার করে এমন একটি রুট সন্ধান করুন। যদি কোনও পূর্ণসংখ্যার রুট না পাওয়া যায় তবে ভগ্নাংশগুলো ব্যবহার করে দেখুন।
a^{4}-4a^{3}+8a^{2}-16a+16=0
ফ্যাক্টর উপপাদ্য অনুসারে, a-k হল প্রতিটি মূল k-এর জন্য বহুপদের একটি ফ্যাক্টর৷ a^{4}-4a^{3}+8a^{2}-16a+16 পেতে a^{5}-6a^{4}+16a^{3}-32a^{2}+48a-32 কে a-2 দিয়ে ভাগ করুন। ফলাফল ফ্যাক্টর করতে, সমীকরণটির সমাধান করুন যেখানে এটি 0-এর সমান।
±16,±8,±4,±2,±1
যুক্তিসঙ্গত মূল উপপাদ্য অনুসারে, একটি বহুপদের সমস্ত যুক্তিসঙ্গত মূল ফর্ম \frac{p}{q}-এ রয়েছে, যেখানে p ধ্রুবক টার্ম 16-কে ভাগ করে এবং q সামনের গুণাঙ্ক 1-কে ভাগ করে৷ সমস্ত প্রার্থীকে তালিকাভুক্ত করুন \frac{p}{q}।
a=2
সর্বমোট মান দ্বারা ক্ষুদ্রতম থেকে শুরু করে সমস্ত পূর্ণসংখ্যার মানগুলো ব্যবহার করে এমন একটি রুট সন্ধান করুন। যদি কোনও পূর্ণসংখ্যার রুট না পাওয়া যায় তবে ভগ্নাংশগুলো ব্যবহার করে দেখুন।
a^{3}-2a^{2}+4a-8=0
ফ্যাক্টর উপপাদ্য অনুসারে, a-k হল প্রতিটি মূল k-এর জন্য বহুপদের একটি ফ্যাক্টর৷ a^{3}-2a^{2}+4a-8 পেতে a^{4}-4a^{3}+8a^{2}-16a+16 কে a-2 দিয়ে ভাগ করুন। ফলাফল ফ্যাক্টর করতে, সমীকরণটির সমাধান করুন যেখানে এটি 0-এর সমান।
±8,±4,±2,±1
যুক্তিসঙ্গত মূল উপপাদ্য অনুসারে, একটি বহুপদের সমস্ত যুক্তিসঙ্গত মূল ফর্ম \frac{p}{q}-এ রয়েছে, যেখানে p ধ্রুবক টার্ম -8-কে ভাগ করে এবং q সামনের গুণাঙ্ক 1-কে ভাগ করে৷ সমস্ত প্রার্থীকে তালিকাভুক্ত করুন \frac{p}{q}।
a=2
সর্বমোট মান দ্বারা ক্ষুদ্রতম থেকে শুরু করে সমস্ত পূর্ণসংখ্যার মানগুলো ব্যবহার করে এমন একটি রুট সন্ধান করুন। যদি কোনও পূর্ণসংখ্যার রুট না পাওয়া যায় তবে ভগ্নাংশগুলো ব্যবহার করে দেখুন।
a^{2}+4=0
ফ্যাক্টর উপপাদ্য অনুসারে, a-k হল প্রতিটি মূল k-এর জন্য বহুপদের একটি ফ্যাক্টর৷ a^{2}+4 পেতে a^{3}-2a^{2}+4a-8 কে a-2 দিয়ে ভাগ করুন। ফলাফল ফ্যাক্টর করতে, সমীকরণটির সমাধান করুন যেখানে এটি 0-এর সমান।
a=\frac{0±\sqrt{0^{2}-4\times 1\times 4}}{2}
দ্বিঘাত সূত্র : \frac{-b±\sqrt{b^{2}-4ac}}{2a} ব্যবহার করে ফর্ম ax^{2}+bx+c=0 -এর সমস্ত সমীকরণ সমাধান করা যেতে পারে৷ দ্বিঘাত সূত্রে a-এর জন্য 1, b-এর জন্য 0, c-এর জন্য 4।
a=\frac{0±\sqrt{-16}}{2}
গণনাটি করুন৷
a^{2}+4
বহুপদ a^{2}+4 গুণনীয়ক হয়নি কারণ এটিতে কোনও আনুপাতিক মূল নেই।
\left(a^{2}+4\right)\left(a-2\right)^{3}
প্রাপ্ত মূলগুলো ব্যবহার করে গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}