মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

p+q=-1 pq=1\left(-12\right)=-12
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি a^{2}+pa+qa-12 হিসাবে পুনরায় লিখতে হবে। p এবং q খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-12 2,-6 3,-4
যেহেতু pq হল ঋণাত্মক, তাই p এবং q-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু p+q হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -12 প্রদান করে।
1-12=-11 2-6=-4 3-4=-1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
p=-4 q=3
সমাধানটি হল সেই জোড়া যা -1 যোগফল প্রদান করে।
\left(a^{2}-4a\right)+\left(3a-12\right)
\left(a^{2}-4a\right)+\left(3a-12\right) হিসেবে a^{2}-a-12 পুনরায় লিখুন৷
a\left(a-4\right)+3\left(a-4\right)
প্রথম গোষ্ঠীতে a এবং দ্বিতীয় গোষ্ঠীতে 3 ফ্যাক্টর আউট।
\left(a-4\right)\left(a+3\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম a-4 ফ্যাক্টর আউট করুন।
a^{2}-a-12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
a=\frac{-\left(-1\right)±\sqrt{1-4\left(-12\right)}}{2}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
a=\frac{-\left(-1\right)±\sqrt{1+48}}{2}
-4 কে -12 বার গুণ করুন।
a=\frac{-\left(-1\right)±\sqrt{49}}{2}
48 এ 1 যোগ করুন।
a=\frac{-\left(-1\right)±7}{2}
49 এর স্কোয়ার রুট নিন।
a=\frac{1±7}{2}
-1-এর বিপরীত হলো 1।
a=\frac{8}{2}
এখন সমীকরণটি সমাধান করুন a=\frac{1±7}{2} যখন ± হল যোগ৷ 7 এ 1 যোগ করুন।
a=4
8 কে 2 দিয়ে ভাগ করুন।
a=-\frac{6}{2}
এখন সমীকরণটি সমাধান করুন a=\frac{1±7}{2} যখন ± হল বিয়োগ৷ 1 থেকে 7 বাদ দিন।
a=-3
-6 কে 2 দিয়ে ভাগ করুন।
a^{2}-a-12=\left(a-4\right)\left(a-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 4 ও x_{2} এর ক্ষেত্রে বিকল্প -3
a^{2}-a-12=\left(a-4\right)\left(a+3\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷