মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন (complex solution)
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

8x-2\left(3+x\right)x-2=0
উভয় দিক থেকে 2 বিয়োগ করুন।
8x+\left(-6-2x\right)x-2=0
-2 কে 3+x দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
8x-6x-2x^{2}-2=0
-6-2x কে x দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
2x-2x^{2}-2=0
2x পেতে 8x এবং -6x একত্রিত করুন।
-2x^{2}+2x-2=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-2±\sqrt{2^{2}-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য -2, b এর জন্য 2 এবং c এর জন্য -2 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-2±\sqrt{4-4\left(-2\right)\left(-2\right)}}{2\left(-2\right)}
2 এর বর্গ
x=\frac{-2±\sqrt{4+8\left(-2\right)}}{2\left(-2\right)}
-4 কে -2 বার গুণ করুন।
x=\frac{-2±\sqrt{4-16}}{2\left(-2\right)}
8 কে -2 বার গুণ করুন।
x=\frac{-2±\sqrt{-12}}{2\left(-2\right)}
-16 এ 4 যোগ করুন।
x=\frac{-2±2\sqrt{3}i}{2\left(-2\right)}
-12 এর স্কোয়ার রুট নিন।
x=\frac{-2±2\sqrt{3}i}{-4}
2 কে -2 বার গুণ করুন।
x=\frac{-2+2\sqrt{3}i}{-4}
এখন সমীকরণটি সমাধান করুন x=\frac{-2±2\sqrt{3}i}{-4} যখন ± হল যোগ৷ 2i\sqrt{3} এ -2 যোগ করুন।
x=\frac{-\sqrt{3}i+1}{2}
-2+2i\sqrt{3} কে -4 দিয়ে ভাগ করুন।
x=\frac{-2\sqrt{3}i-2}{-4}
এখন সমীকরণটি সমাধান করুন x=\frac{-2±2\sqrt{3}i}{-4} যখন ± হল বিয়োগ৷ -2 থেকে 2i\sqrt{3} বাদ দিন।
x=\frac{1+\sqrt{3}i}{2}
-2-2i\sqrt{3} কে -4 দিয়ে ভাগ করুন।
x=\frac{-\sqrt{3}i+1}{2} x=\frac{1+\sqrt{3}i}{2}
সমীকরণটি এখন সমাধান করা হয়েছে।
8x-2\left(3+x\right)x=2
-2 পেতে -1 এবং 2 গুণ করুন।
8x+\left(-6-2x\right)x=2
-2 কে 3+x দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
8x-6x-2x^{2}=2
-6-2x কে x দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
2x-2x^{2}=2
2x পেতে 8x এবং -6x একত্রিত করুন।
-2x^{2}+2x=2
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
\frac{-2x^{2}+2x}{-2}=\frac{2}{-2}
-2 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\frac{2}{-2}x=\frac{2}{-2}
-2 দিয়ে ভাগ করে -2 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-x=\frac{2}{-2}
2 কে -2 দিয়ে ভাগ করুন।
x^{2}-x=-1
2 কে -2 দিয়ে ভাগ করুন।
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-1+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} পেতে x টার্মের গুণাঙ্ক -1-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{1}{2}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-x+\frac{1}{4}=-1+\frac{1}{4}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{1}{2} এর বর্গ করুন।
x^{2}-x+\frac{1}{4}=-\frac{3}{4}
\frac{1}{4} এ -1 যোগ করুন।
\left(x-\frac{1}{2}\right)^{2}=-\frac{3}{4}
x^{2}-x+\frac{1}{4} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{1}{2}=\frac{\sqrt{3}i}{2} x-\frac{1}{2}=-\frac{\sqrt{3}i}{2}
সিমপ্লিফাই।
x=\frac{1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i+1}{2}
সমীকরণের উভয় দিকে \frac{1}{2} যোগ করুন।