মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x\left(8x+25\right)
ফ্যাক্টর আউট x।
8x^{2}+25x=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-25±\sqrt{25^{2}}}{2\times 8}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-25±25}{2\times 8}
25^{2} এর স্কোয়ার রুট নিন।
x=\frac{-25±25}{16}
2 কে 8 বার গুণ করুন।
x=\frac{0}{16}
এখন সমীকরণটি সমাধান করুন x=\frac{-25±25}{16} যখন ± হল যোগ৷ 25 এ -25 যোগ করুন।
x=0
0 কে 16 দিয়ে ভাগ করুন।
x=-\frac{50}{16}
এখন সমীকরণটি সমাধান করুন x=\frac{-25±25}{16} যখন ± হল বিয়োগ৷ -25 থেকে 25 বাদ দিন।
x=-\frac{25}{8}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-50}{16} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
8x^{2}+25x=8x\left(x-\left(-\frac{25}{8}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 0 ও x_{2} এর ক্ষেত্রে বিকল্প -\frac{25}{8}
8x^{2}+25x=8x\left(x+\frac{25}{8}\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷
8x^{2}+25x=8x\times \frac{8x+25}{8}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে x এ \frac{25}{8} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
8x^{2}+25x=x\left(8x+25\right)
8 এবং 8 এর মধ্যে সর্বাধিক প্রচলিত ফ্যাক্টর 8 বাতিল করা হয়েছে৷