ভাঙা
\left(y-1\right)\left(7y+3\right)
মূল্যায়ন করুন
\left(y-1\right)\left(7y+3\right)
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
a+b=-4 ab=7\left(-3\right)=-21
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি 7y^{2}+ay+by-3 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-21 3,-7
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -21 প্রদান করে।
1-21=-20 3-7=-4
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-7 b=3
সমাধানটি হল সেই জোড়া যা -4 যোগফল প্রদান করে।
\left(7y^{2}-7y\right)+\left(3y-3\right)
\left(7y^{2}-7y\right)+\left(3y-3\right) হিসেবে 7y^{2}-4y-3 পুনরায় লিখুন৷
7y\left(y-1\right)+3\left(y-1\right)
প্রথম গোষ্ঠীতে 7y এবং দ্বিতীয় গোষ্ঠীতে 3 ফ্যাক্টর আউট।
\left(y-1\right)\left(7y+3\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম y-1 ফ্যাক্টর আউট করুন।
7y^{2}-4y-3=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
y=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 7\left(-3\right)}}{2\times 7}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
y=\frac{-\left(-4\right)±\sqrt{16-4\times 7\left(-3\right)}}{2\times 7}
-4 এর বর্গ
y=\frac{-\left(-4\right)±\sqrt{16-28\left(-3\right)}}{2\times 7}
-4 কে 7 বার গুণ করুন।
y=\frac{-\left(-4\right)±\sqrt{16+84}}{2\times 7}
-28 কে -3 বার গুণ করুন।
y=\frac{-\left(-4\right)±\sqrt{100}}{2\times 7}
84 এ 16 যোগ করুন।
y=\frac{-\left(-4\right)±10}{2\times 7}
100 এর স্কোয়ার রুট নিন।
y=\frac{4±10}{2\times 7}
-4-এর বিপরীত হলো 4।
y=\frac{4±10}{14}
2 কে 7 বার গুণ করুন।
y=\frac{14}{14}
এখন সমীকরণটি সমাধান করুন y=\frac{4±10}{14} যখন ± হল যোগ৷ 10 এ 4 যোগ করুন।
y=1
14 কে 14 দিয়ে ভাগ করুন।
y=-\frac{6}{14}
এখন সমীকরণটি সমাধান করুন y=\frac{4±10}{14} যখন ± হল বিয়োগ৷ 4 থেকে 10 বাদ দিন।
y=-\frac{3}{7}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-6}{14} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
7y^{2}-4y-3=7\left(y-1\right)\left(y-\left(-\frac{3}{7}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 1 ও x_{2} এর ক্ষেত্রে বিকল্প -\frac{3}{7}
7y^{2}-4y-3=7\left(y-1\right)\left(y+\frac{3}{7}\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷
7y^{2}-4y-3=7\left(y-1\right)\times \frac{7y+3}{7}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে y এ \frac{3}{7} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
7y^{2}-4y-3=\left(y-1\right)\left(7y+3\right)
7 এবং 7 এর মধ্যে সর্বাধিক প্রচলিত ফ্যাক্টর 7 বাতিল করা হয়েছে৷
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}