মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

6x-x^{2}-8=0
উভয় দিক থেকে 8 বিয়োগ করুন।
-x^{2}+6x-8=0
বহুপদটিকে স্ট্যান্ডার্ড ফর্মে দেখাতে পুনরায় সাজান। টার্ম উচ্চতর থেকে নিম্নতর পাওয়ার ক্রমে স্থাপন করুন।
a+b=6 ab=-\left(-8\right)=8
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি -x^{2}+ax+bx-8 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,8 2,4
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ধনাত্মক, তাই a এবং b উভয়ই ধনাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 8 প্রদান করে।
1+8=9 2+4=6
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=4 b=2
সমাধানটি হল সেই জোড়া যা 6 যোগফল প্রদান করে।
\left(-x^{2}+4x\right)+\left(2x-8\right)
\left(-x^{2}+4x\right)+\left(2x-8\right) হিসেবে -x^{2}+6x-8 পুনরায় লিখুন৷
-x\left(x-4\right)+2\left(x-4\right)
প্রথম গোষ্ঠীতে -x এবং দ্বিতীয় গোষ্ঠীতে 2 ফ্যাক্টর আউট।
\left(x-4\right)\left(-x+2\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-4 ফ্যাক্টর আউট করুন।
x=4 x=2
সমীকরণের সমাধানগুলো খুঁজতে, x-4=0 এবং -x+2=0 সমাধান করুন।
-x^{2}+6x=8
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
-x^{2}+6x-8=8-8
সমীকরণের উভয় দিক থেকে 8 বাদ দিন।
-x^{2}+6x-8=0
8 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
x=\frac{-6±\sqrt{6^{2}-4\left(-1\right)\left(-8\right)}}{2\left(-1\right)}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য -1, b এর জন্য 6 এবং c এর জন্য -8 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-6±\sqrt{36-4\left(-1\right)\left(-8\right)}}{2\left(-1\right)}
6 এর বর্গ
x=\frac{-6±\sqrt{36+4\left(-8\right)}}{2\left(-1\right)}
-4 কে -1 বার গুণ করুন।
x=\frac{-6±\sqrt{36-32}}{2\left(-1\right)}
4 কে -8 বার গুণ করুন।
x=\frac{-6±\sqrt{4}}{2\left(-1\right)}
-32 এ 36 যোগ করুন।
x=\frac{-6±2}{2\left(-1\right)}
4 এর স্কোয়ার রুট নিন।
x=\frac{-6±2}{-2}
2 কে -1 বার গুণ করুন।
x=-\frac{4}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{-6±2}{-2} যখন ± হল যোগ৷ 2 এ -6 যোগ করুন।
x=2
-4 কে -2 দিয়ে ভাগ করুন।
x=-\frac{8}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{-6±2}{-2} যখন ± হল বিয়োগ৷ -6 থেকে 2 বাদ দিন।
x=4
-8 কে -2 দিয়ে ভাগ করুন।
x=2 x=4
সমীকরণটি এখন সমাধান করা হয়েছে।
-x^{2}+6x=8
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
\frac{-x^{2}+6x}{-1}=\frac{8}{-1}
-1 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\frac{6}{-1}x=\frac{8}{-1}
-1 দিয়ে ভাগ করে -1 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-6x=\frac{8}{-1}
6 কে -1 দিয়ে ভাগ করুন।
x^{2}-6x=-8
8 কে -1 দিয়ে ভাগ করুন।
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
-3 পেতে x টার্মের গুণাঙ্ক -6-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -3-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-6x+9=-8+9
-3 এর বর্গ
x^{2}-6x+9=1
9 এ -8 যোগ করুন।
\left(x-3\right)^{2}=1
x^{2}-6x+9 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-3=1 x-3=-1
সিমপ্লিফাই।
x=4 x=2
সমীকরণের উভয় দিকে 3 যোগ করুন।