মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

3\left(2x^{2}+3x-9\right)
ফ্যাক্টর আউট 3।
a+b=3 ab=2\left(-9\right)=-18
বিবেচনা করুন 2x^{2}+3x-9। গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি 2x^{2}+ax+bx-9 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,18 -2,9 -3,6
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -18 প্রদান করে।
-1+18=17 -2+9=7 -3+6=3
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-3 b=6
সমাধানটি হল সেই জোড়া যা 3 যোগফল প্রদান করে।
\left(2x^{2}-3x\right)+\left(6x-9\right)
\left(2x^{2}-3x\right)+\left(6x-9\right) হিসেবে 2x^{2}+3x-9 পুনরায় লিখুন৷
x\left(2x-3\right)+3\left(2x-3\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 3 ফ্যাক্টর আউট।
\left(2x-3\right)\left(x+3\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম 2x-3 ফ্যাক্টর আউট করুন।
3\left(2x-3\right)\left(x+3\right)
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
6x^{2}+9x-27=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-9±\sqrt{9^{2}-4\times 6\left(-27\right)}}{2\times 6}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-9±\sqrt{81-4\times 6\left(-27\right)}}{2\times 6}
9 এর বর্গ
x=\frac{-9±\sqrt{81-24\left(-27\right)}}{2\times 6}
-4 কে 6 বার গুণ করুন।
x=\frac{-9±\sqrt{81+648}}{2\times 6}
-24 কে -27 বার গুণ করুন।
x=\frac{-9±\sqrt{729}}{2\times 6}
648 এ 81 যোগ করুন।
x=\frac{-9±27}{2\times 6}
729 এর স্কোয়ার রুট নিন।
x=\frac{-9±27}{12}
2 কে 6 বার গুণ করুন।
x=\frac{18}{12}
এখন সমীকরণটি সমাধান করুন x=\frac{-9±27}{12} যখন ± হল যোগ৷ 27 এ -9 যোগ করুন।
x=\frac{3}{2}
6 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{18}{12} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=-\frac{36}{12}
এখন সমীকরণটি সমাধান করুন x=\frac{-9±27}{12} যখন ± হল বিয়োগ৷ -9 থেকে 27 বাদ দিন।
x=-3
-36 কে 12 দিয়ে ভাগ করুন।
6x^{2}+9x-27=6\left(x-\frac{3}{2}\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প \frac{3}{2} ও x_{2} এর ক্ষেত্রে বিকল্প -3
6x^{2}+9x-27=6\left(x-\frac{3}{2}\right)\left(x+3\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷
6x^{2}+9x-27=6\times \frac{2x-3}{2}\left(x+3\right)
কমন হর খুঁজে এবং লব বিয়োগ করার মাধ্যমে x থেকে \frac{3}{2} বিয়োগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
6x^{2}+9x-27=3\left(2x-3\right)\left(x+3\right)
6 এবং 2 এর মধ্যে সর্বাধিক প্রচলিত ফ্যাক্টর 2 বাতিল করা হয়েছে৷