মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

a+b=13 ab=6\left(-28\right)=-168
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি 6x^{2}+ax+bx-28 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -168 প্রদান করে।
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-8 b=21
সমাধানটি হল সেই জোড়া যা 13 যোগফল প্রদান করে।
\left(6x^{2}-8x\right)+\left(21x-28\right)
\left(6x^{2}-8x\right)+\left(21x-28\right) হিসেবে 6x^{2}+13x-28 পুনরায় লিখুন৷
2x\left(3x-4\right)+7\left(3x-4\right)
প্রথম গোষ্ঠীতে 2x এবং দ্বিতীয় গোষ্ঠীতে 7 ফ্যাক্টর আউট।
\left(3x-4\right)\left(2x+7\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম 3x-4 ফ্যাক্টর আউট করুন।
6x^{2}+13x-28=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-13±\sqrt{13^{2}-4\times 6\left(-28\right)}}{2\times 6}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-13±\sqrt{169-4\times 6\left(-28\right)}}{2\times 6}
13 এর বর্গ
x=\frac{-13±\sqrt{169-24\left(-28\right)}}{2\times 6}
-4 কে 6 বার গুণ করুন।
x=\frac{-13±\sqrt{169+672}}{2\times 6}
-24 কে -28 বার গুণ করুন।
x=\frac{-13±\sqrt{841}}{2\times 6}
672 এ 169 যোগ করুন।
x=\frac{-13±29}{2\times 6}
841 এর স্কোয়ার রুট নিন।
x=\frac{-13±29}{12}
2 কে 6 বার গুণ করুন।
x=\frac{16}{12}
এখন সমীকরণটি সমাধান করুন x=\frac{-13±29}{12} যখন ± হল যোগ৷ 29 এ -13 যোগ করুন।
x=\frac{4}{3}
4 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{16}{12} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=-\frac{42}{12}
এখন সমীকরণটি সমাধান করুন x=\frac{-13±29}{12} যখন ± হল বিয়োগ৷ -13 থেকে 29 বাদ দিন।
x=-\frac{7}{2}
6 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-42}{12} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
6x^{2}+13x-28=6\left(x-\frac{4}{3}\right)\left(x-\left(-\frac{7}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প \frac{4}{3} ও x_{2} এর ক্ষেত্রে বিকল্প -\frac{7}{2}
6x^{2}+13x-28=6\left(x-\frac{4}{3}\right)\left(x+\frac{7}{2}\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷
6x^{2}+13x-28=6\times \frac{3x-4}{3}\left(x+\frac{7}{2}\right)
কমন হর খুঁজে এবং লব বিয়োগ করার মাধ্যমে x থেকে \frac{4}{3} বিয়োগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
6x^{2}+13x-28=6\times \frac{3x-4}{3}\times \frac{2x+7}{2}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে x এ \frac{7}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
6x^{2}+13x-28=6\times \frac{\left(3x-4\right)\left(2x+7\right)}{3\times 2}
লবকে তার মানের সম পরিমাণ বার এবং হরকে তার মানের সম পরিমাণ বার গুণ করার মাধ্যমে \frac{3x-4}{3} কে \frac{2x+7}{2} বার গুণ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
6x^{2}+13x-28=6\times \frac{\left(3x-4\right)\left(2x+7\right)}{6}
3 কে 2 বার গুণ করুন।
6x^{2}+13x-28=\left(3x-4\right)\left(2x+7\right)
6 এবং 6 এর মধ্যে সর্বাধিক প্রচলিত ফ্যাক্টর 6 বাতিল করা হয়েছে৷