মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

5x^{2}-4x=0
উভয় দিক থেকে 4x বিয়োগ করুন।
x\left(5x-4\right)=0
ফ্যাক্টর আউট x।
x=0 x=\frac{4}{5}
সমীকরণের সমাধানগুলো খুঁজতে, x=0 এবং 5x-4=0 সমাধান করুন।
5x^{2}-4x=0
উভয় দিক থেকে 4x বিয়োগ করুন।
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}}}{2\times 5}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 5, b এর জন্য -4 এবং c এর জন্য 0 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-4\right)±4}{2\times 5}
\left(-4\right)^{2} এর স্কোয়ার রুট নিন।
x=\frac{4±4}{2\times 5}
-4-এর বিপরীত হলো 4।
x=\frac{4±4}{10}
2 কে 5 বার গুণ করুন।
x=\frac{8}{10}
এখন সমীকরণটি সমাধান করুন x=\frac{4±4}{10} যখন ± হল যোগ৷ 4 এ 4 যোগ করুন।
x=\frac{4}{5}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{8}{10} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=\frac{0}{10}
এখন সমীকরণটি সমাধান করুন x=\frac{4±4}{10} যখন ± হল বিয়োগ৷ 4 থেকে 4 বাদ দিন।
x=0
0 কে 10 দিয়ে ভাগ করুন।
x=\frac{4}{5} x=0
সমীকরণটি এখন সমাধান করা হয়েছে।
5x^{2}-4x=0
উভয় দিক থেকে 4x বিয়োগ করুন।
\frac{5x^{2}-4x}{5}=\frac{0}{5}
5 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}-\frac{4}{5}x=\frac{0}{5}
5 দিয়ে ভাগ করে 5 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-\frac{4}{5}x=0
0 কে 5 দিয়ে ভাগ করুন।
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=\left(-\frac{2}{5}\right)^{2}
-\frac{2}{5} পেতে x টার্মের গুণাঙ্ক -\frac{4}{5}-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{2}{5}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-\frac{4}{5}x+\frac{4}{25}=\frac{4}{25}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{2}{5} এর বর্গ করুন।
\left(x-\frac{2}{5}\right)^{2}=\frac{4}{25}
x^{2}-\frac{4}{5}x+\frac{4}{25} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{\frac{4}{25}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{2}{5}=\frac{2}{5} x-\frac{2}{5}=-\frac{2}{5}
সিমপ্লিফাই।
x=\frac{4}{5} x=0
সমীকরণের উভয় দিকে \frac{2}{5} যোগ করুন।