মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x\left(5x-20\right)=0
ফ্যাক্টর আউট x।
x=0 x=4
সমীকরণের সমাধানগুলো খুঁজতে, x=0 এবং 5x-20=0 সমাধান করুন।
5x^{2}-20x=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}}}{2\times 5}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 5, b এর জন্য -20 এবং c এর জন্য 0 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-20\right)±20}{2\times 5}
\left(-20\right)^{2} এর স্কোয়ার রুট নিন।
x=\frac{20±20}{2\times 5}
-20-এর বিপরীত হলো 20।
x=\frac{20±20}{10}
2 কে 5 বার গুণ করুন।
x=\frac{40}{10}
এখন সমীকরণটি সমাধান করুন x=\frac{20±20}{10} যখন ± হল যোগ৷ 20 এ 20 যোগ করুন।
x=4
40 কে 10 দিয়ে ভাগ করুন।
x=\frac{0}{10}
এখন সমীকরণটি সমাধান করুন x=\frac{20±20}{10} যখন ± হল বিয়োগ৷ 20 থেকে 20 বাদ দিন।
x=0
0 কে 10 দিয়ে ভাগ করুন।
x=4 x=0
সমীকরণটি এখন সমাধান করা হয়েছে।
5x^{2}-20x=0
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
\frac{5x^{2}-20x}{5}=\frac{0}{5}
5 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\left(-\frac{20}{5}\right)x=\frac{0}{5}
5 দিয়ে ভাগ করে 5 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-4x=\frac{0}{5}
-20 কে 5 দিয়ে ভাগ করুন।
x^{2}-4x=0
0 কে 5 দিয়ে ভাগ করুন।
x^{2}-4x+\left(-2\right)^{2}=\left(-2\right)^{2}
-2 পেতে x টার্মের গুণাঙ্ক -4-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -2-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-4x+4=4
-2 এর বর্গ
\left(x-2\right)^{2}=4
x^{2}-4x+4 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-2\right)^{2}}=\sqrt{4}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-2=2 x-2=-2
সিমপ্লিফাই।
x=4 x=0
সমীকরণের উভয় দিকে 2 যোগ করুন।