মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

4x^{2}-16x+7\geq 0
4x কে x-4 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
4x^{2}-16x+7=0
অসমতার সমাধান করতে, বাম দিকটিকে গুণনীয়ক করুন৷ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 7}}{2\times 4}
দ্বিঘাত সূত্র : \frac{-b±\sqrt{b^{2}-4ac}}{2a} ব্যবহার করে ফর্ম ax^{2}+bx+c=0 -এর সমস্ত সমীকরণ সমাধান করা যেতে পারে৷ দ্বিঘাত সূত্রে a-এর জন্য 4, b-এর জন্য -16, c-এর জন্য 7।
x=\frac{16±12}{8}
গণনাটি করুন৷
x=\frac{7}{2} x=\frac{1}{2}
সমীকরণ x=\frac{16±12}{8} সমাধান করুন যেখানে ± হল প্লাস এবং ± হল মাইনাস।
4\left(x-\frac{7}{2}\right)\left(x-\frac{1}{2}\right)\geq 0
প্রাপ্ত সমাধান ব্যবহার করে অসাম্যটি আবার লিখুন।
x-\frac{7}{2}\leq 0 x-\frac{1}{2}\leq 0
গুণফল ≥0 হওয়ার জন্য, x-\frac{7}{2} এবং x-\frac{1}{2} উভয়কে ≤0 বা উভয়কে ≥0 হতে হবে। x-\frac{7}{2} এবং x-\frac{1}{2} উভয়ই ≤0 হলে কেসটি বিবেচনা করুন।
x\leq \frac{1}{2}
উভয় অসমতাকে সম্পন্ন করতে পারে এমন সমাধান হল x\leq \frac{1}{2}।
x-\frac{1}{2}\geq 0 x-\frac{7}{2}\geq 0
x-\frac{7}{2} এবং x-\frac{1}{2} উভয়ই ≥0 হলে কেসটি বিবেচনা করুন।
x\geq \frac{7}{2}
উভয় অসমতাকে সম্পন্ন করতে পারে এমন সমাধান হল x\geq \frac{7}{2}।
x\leq \frac{1}{2}\text{; }x\geq \frac{7}{2}
চূড়ান্ত সমাধানটি হল প্রাপ্ত সমাধানগুলোর ইউনিয়ন।