মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

4\left(x^{2}+x-12\right)
ফ্যাক্টর আউট 4।
a+b=1 ab=1\left(-12\right)=-12
বিবেচনা করুন x^{2}+x-12। গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি x^{2}+ax+bx-12 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,12 -2,6 -3,4
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -12 প্রদান করে।
-1+12=11 -2+6=4 -3+4=1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-3 b=4
সমাধানটি হল সেই জোড়া যা 1 যোগফল প্রদান করে।
\left(x^{2}-3x\right)+\left(4x-12\right)
\left(x^{2}-3x\right)+\left(4x-12\right) হিসেবে x^{2}+x-12 পুনরায় লিখুন৷
x\left(x-3\right)+4\left(x-3\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 4 ফ্যাক্টর আউট।
\left(x-3\right)\left(x+4\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-3 ফ্যাক্টর আউট করুন।
4\left(x-3\right)\left(x+4\right)
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
4x^{2}+4x-48=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-4±\sqrt{4^{2}-4\times 4\left(-48\right)}}{2\times 4}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-4±\sqrt{16-4\times 4\left(-48\right)}}{2\times 4}
4 এর বর্গ
x=\frac{-4±\sqrt{16-16\left(-48\right)}}{2\times 4}
-4 কে 4 বার গুণ করুন।
x=\frac{-4±\sqrt{16+768}}{2\times 4}
-16 কে -48 বার গুণ করুন।
x=\frac{-4±\sqrt{784}}{2\times 4}
768 এ 16 যোগ করুন।
x=\frac{-4±28}{2\times 4}
784 এর স্কোয়ার রুট নিন।
x=\frac{-4±28}{8}
2 কে 4 বার গুণ করুন।
x=\frac{24}{8}
এখন সমীকরণটি সমাধান করুন x=\frac{-4±28}{8} যখন ± হল যোগ৷ 28 এ -4 যোগ করুন।
x=3
24 কে 8 দিয়ে ভাগ করুন।
x=-\frac{32}{8}
এখন সমীকরণটি সমাধান করুন x=\frac{-4±28}{8} যখন ± হল বিয়োগ৷ -4 থেকে 28 বাদ দিন।
x=-4
-32 কে 8 দিয়ে ভাগ করুন।
4x^{2}+4x-48=4\left(x-3\right)\left(x-\left(-4\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 3 ও x_{2} এর ক্ষেত্রে বিকল্প -4
4x^{2}+4x-48=4\left(x-3\right)\left(x+4\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷