মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2\left(2w-w^{2}\right)
ফ্যাক্টর আউট 2।
w\left(2-w\right)
বিবেচনা করুন 2w-w^{2}। ফ্যাক্টর আউট w।
2w\left(-w+2\right)
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
-2w^{2}+4w=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
w=\frac{-4±\sqrt{4^{2}}}{2\left(-2\right)}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
w=\frac{-4±4}{2\left(-2\right)}
4^{2} এর স্কোয়ার রুট নিন।
w=\frac{-4±4}{-4}
2 কে -2 বার গুণ করুন।
w=\frac{0}{-4}
এখন সমীকরণটি সমাধান করুন w=\frac{-4±4}{-4} যখন ± হল যোগ৷ 4 এ -4 যোগ করুন।
w=0
0 কে -4 দিয়ে ভাগ করুন।
w=-\frac{8}{-4}
এখন সমীকরণটি সমাধান করুন w=\frac{-4±4}{-4} যখন ± হল বিয়োগ৷ -4 থেকে 4 বাদ দিন।
w=2
-8 কে -4 দিয়ে ভাগ করুন।
-2w^{2}+4w=-2w\left(w-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 0 ও x_{2} এর ক্ষেত্রে বিকল্প 2