মূল বিষয়বস্তুতে এড়িয়ে যান
z এর জন্য সমাধান করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

4z^{2}+160z=600
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
4z^{2}+160z-600=600-600
সমীকরণের উভয় দিক থেকে 600 বাদ দিন।
4z^{2}+160z-600=0
600 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
z=\frac{-160±\sqrt{160^{2}-4\times 4\left(-600\right)}}{2\times 4}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 4, b এর জন্য 160 এবং c এর জন্য -600 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
z=\frac{-160±\sqrt{25600-4\times 4\left(-600\right)}}{2\times 4}
160 এর বর্গ
z=\frac{-160±\sqrt{25600-16\left(-600\right)}}{2\times 4}
-4 কে 4 বার গুণ করুন।
z=\frac{-160±\sqrt{25600+9600}}{2\times 4}
-16 কে -600 বার গুণ করুন।
z=\frac{-160±\sqrt{35200}}{2\times 4}
9600 এ 25600 যোগ করুন।
z=\frac{-160±40\sqrt{22}}{2\times 4}
35200 এর স্কোয়ার রুট নিন।
z=\frac{-160±40\sqrt{22}}{8}
2 কে 4 বার গুণ করুন।
z=\frac{40\sqrt{22}-160}{8}
এখন সমীকরণটি সমাধান করুন z=\frac{-160±40\sqrt{22}}{8} যখন ± হল যোগ৷ 40\sqrt{22} এ -160 যোগ করুন।
z=5\sqrt{22}-20
-160+40\sqrt{22} কে 8 দিয়ে ভাগ করুন।
z=\frac{-40\sqrt{22}-160}{8}
এখন সমীকরণটি সমাধান করুন z=\frac{-160±40\sqrt{22}}{8} যখন ± হল বিয়োগ৷ -160 থেকে 40\sqrt{22} বাদ দিন।
z=-5\sqrt{22}-20
-160-40\sqrt{22} কে 8 দিয়ে ভাগ করুন।
z=5\sqrt{22}-20 z=-5\sqrt{22}-20
সমীকরণটি এখন সমাধান করা হয়েছে।
4z^{2}+160z=600
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
\frac{4z^{2}+160z}{4}=\frac{600}{4}
4 দিয়ে উভয় দিককে ভাগ করুন।
z^{2}+\frac{160}{4}z=\frac{600}{4}
4 দিয়ে ভাগ করে 4 দিয়ে গুণ করে আগের অবস্থায় আনুন।
z^{2}+40z=\frac{600}{4}
160 কে 4 দিয়ে ভাগ করুন।
z^{2}+40z=150
600 কে 4 দিয়ে ভাগ করুন।
z^{2}+40z+20^{2}=150+20^{2}
20 পেতে x টার্মের গুণাঙ্ক 40-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে 20-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
z^{2}+40z+400=150+400
20 এর বর্গ
z^{2}+40z+400=550
400 এ 150 যোগ করুন।
\left(z+20\right)^{2}=550
z^{2}+40z+400 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(z+20\right)^{2}}=\sqrt{550}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
z+20=5\sqrt{22} z+20=-5\sqrt{22}
সিমপ্লিফাই।
z=5\sqrt{22}-20 z=-5\sqrt{22}-20
সমীকরণের উভয় দিক থেকে 20 বাদ দিন।