মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

4x^{2}-1+2x^{2}-x=0
x কে 2x-1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
6x^{2}-1-x=0
6x^{2} পেতে 4x^{2} এবং 2x^{2} একত্রিত করুন।
6x^{2}-x-1=0
বহুপদটিকে স্ট্যান্ডার্ড ফর্মে দেখাতে পুনরায় সাজান। টার্ম উচ্চতর থেকে নিম্নতর পাওয়ার ক্রমে স্থাপন করুন।
a+b=-1 ab=6\left(-1\right)=-6
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি 6x^{2}+ax+bx-1 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-6 2,-3
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -6 প্রদান করে।
1-6=-5 2-3=-1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-3 b=2
সমাধানটি হল সেই জোড়া যা -1 যোগফল প্রদান করে।
\left(6x^{2}-3x\right)+\left(2x-1\right)
\left(6x^{2}-3x\right)+\left(2x-1\right) হিসেবে 6x^{2}-x-1 পুনরায় লিখুন৷
3x\left(2x-1\right)+2x-1
6x^{2}-3x-এ 3x ফ্যাক্টর আউট করুন।
\left(2x-1\right)\left(3x+1\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম 2x-1 ফ্যাক্টর আউট করুন।
x=\frac{1}{2} x=-\frac{1}{3}
সমীকরণের সমাধানগুলো খুঁজতে, 2x-1=0 এবং 3x+1=0 সমাধান করুন।
4x^{2}-1+2x^{2}-x=0
x কে 2x-1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
6x^{2}-1-x=0
6x^{2} পেতে 4x^{2} এবং 2x^{2} একত্রিত করুন।
6x^{2}-x-1=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-1\right)}}{2\times 6}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 6, b এর জন্য -1 এবং c এর জন্য -1 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-1\right)}}{2\times 6}
-4 কে 6 বার গুণ করুন।
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 6}
-24 কে -1 বার গুণ করুন।
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 6}
24 এ 1 যোগ করুন।
x=\frac{-\left(-1\right)±5}{2\times 6}
25 এর স্কোয়ার রুট নিন।
x=\frac{1±5}{2\times 6}
-1-এর বিপরীত হলো 1।
x=\frac{1±5}{12}
2 কে 6 বার গুণ করুন।
x=\frac{6}{12}
এখন সমীকরণটি সমাধান করুন x=\frac{1±5}{12} যখন ± হল যোগ৷ 5 এ 1 যোগ করুন।
x=\frac{1}{2}
6 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{6}{12} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=-\frac{4}{12}
এখন সমীকরণটি সমাধান করুন x=\frac{1±5}{12} যখন ± হল বিয়োগ৷ 1 থেকে 5 বাদ দিন।
x=-\frac{1}{3}
4 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-4}{12} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=\frac{1}{2} x=-\frac{1}{3}
সমীকরণটি এখন সমাধান করা হয়েছে।
4x^{2}-1+2x^{2}-x=0
x কে 2x-1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
6x^{2}-1-x=0
6x^{2} পেতে 4x^{2} এবং 2x^{2} একত্রিত করুন।
6x^{2}-x=1
উভয় সাইডে 1 যোগ করুন৷ শূন্যের সাথে যে কোনও সংখ্যা যোগ করলে সেই সংখ্যায় পাওয়া যায়।
\frac{6x^{2}-x}{6}=\frac{1}{6}
6 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}-\frac{1}{6}x=\frac{1}{6}
6 দিয়ে ভাগ করে 6 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{1}{6}+\left(-\frac{1}{12}\right)^{2}
-\frac{1}{12} পেতে x টার্মের গুণাঙ্ক -\frac{1}{6}-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{1}{12}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{1}{6}+\frac{1}{144}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{1}{12} এর বর্গ করুন।
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{25}{144}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{1}{144} এ \frac{1}{6} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
\left(x-\frac{1}{12}\right)^{2}=\frac{25}{144}
x^{2}-\frac{1}{6}x+\frac{1}{144} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{1}{12}=\frac{5}{12} x-\frac{1}{12}=-\frac{5}{12}
সিমপ্লিফাই।
x=\frac{1}{2} x=-\frac{1}{3}
সমীকরণের উভয় দিকে \frac{1}{12} যোগ করুন।