x এর জন্য সমাধান করুন
x=3
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
30+2x-4x^{2}=0
উভয় দিক থেকে 4x^{2} বিয়োগ করুন।
15+x-2x^{2}=0
2 দিয়ে উভয় দিককে ভাগ করুন।
-2x^{2}+x+15=0
বহুপদটিকে স্ট্যান্ডার্ড ফর্মে দেখাতে পুনরায় সাজান। টার্ম উচ্চতর থেকে নিম্নতর পাওয়ার ক্রমে স্থাপন করুন।
a+b=1 ab=-2\times 15=-30
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি -2x^{2}+ax+bx+15 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,30 -2,15 -3,10 -5,6
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -30 প্রদান করে।
-1+30=29 -2+15=13 -3+10=7 -5+6=1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=6 b=-5
সমাধানটি হল সেই জোড়া যা 1 যোগফল প্রদান করে।
\left(-2x^{2}+6x\right)+\left(-5x+15\right)
\left(-2x^{2}+6x\right)+\left(-5x+15\right) হিসেবে -2x^{2}+x+15 পুনরায় লিখুন৷
2x\left(-x+3\right)+5\left(-x+3\right)
প্রথম গোষ্ঠীতে 2x এবং দ্বিতীয় গোষ্ঠীতে 5 ফ্যাক্টর আউট।
\left(-x+3\right)\left(2x+5\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম -x+3 ফ্যাক্টর আউট করুন।
x=3 x=-\frac{5}{2}
সমীকরণের সমাধানগুলো খুঁজতে, -x+3=0 এবং 2x+5=0 সমাধান করুন।
30+2x-4x^{2}=0
উভয় দিক থেকে 4x^{2} বিয়োগ করুন।
-4x^{2}+2x+30=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-2±\sqrt{2^{2}-4\left(-4\right)\times 30}}{2\left(-4\right)}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য -4, b এর জন্য 2 এবং c এর জন্য 30 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-2±\sqrt{4-4\left(-4\right)\times 30}}{2\left(-4\right)}
2 এর বর্গ
x=\frac{-2±\sqrt{4+16\times 30}}{2\left(-4\right)}
-4 কে -4 বার গুণ করুন।
x=\frac{-2±\sqrt{4+480}}{2\left(-4\right)}
16 কে 30 বার গুণ করুন।
x=\frac{-2±\sqrt{484}}{2\left(-4\right)}
480 এ 4 যোগ করুন।
x=\frac{-2±22}{2\left(-4\right)}
484 এর স্কোয়ার রুট নিন।
x=\frac{-2±22}{-8}
2 কে -4 বার গুণ করুন।
x=\frac{20}{-8}
এখন সমীকরণটি সমাধান করুন x=\frac{-2±22}{-8} যখন ± হল যোগ৷ 22 এ -2 যোগ করুন।
x=-\frac{5}{2}
4 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{20}{-8} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=-\frac{24}{-8}
এখন সমীকরণটি সমাধান করুন x=\frac{-2±22}{-8} যখন ± হল বিয়োগ৷ -2 থেকে 22 বাদ দিন।
x=3
-24 কে -8 দিয়ে ভাগ করুন।
x=-\frac{5}{2} x=3
সমীকরণটি এখন সমাধান করা হয়েছে।
30+2x-4x^{2}=0
উভয় দিক থেকে 4x^{2} বিয়োগ করুন।
2x-4x^{2}=-30
উভয় দিক থেকে 30 বিয়োগ করুন। শূন্য থেকে কোনও সংখ্যাকে বিয়োগ করা যায় না৷
-4x^{2}+2x=-30
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
\frac{-4x^{2}+2x}{-4}=-\frac{30}{-4}
-4 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\frac{2}{-4}x=-\frac{30}{-4}
-4 দিয়ে ভাগ করে -4 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-\frac{1}{2}x=-\frac{30}{-4}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{2}{-4} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x^{2}-\frac{1}{2}x=\frac{15}{2}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-30}{-4} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=\frac{15}{2}+\left(-\frac{1}{4}\right)^{2}
-\frac{1}{4} পেতে x টার্মের গুণাঙ্ক -\frac{1}{2}-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{1}{4}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{15}{2}+\frac{1}{16}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{1}{4} এর বর্গ করুন।
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{121}{16}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{1}{16} এ \frac{15}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
\left(x-\frac{1}{4}\right)^{2}=\frac{121}{16}
x^{2}-\frac{1}{2}x+\frac{1}{16} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{121}{16}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{1}{4}=\frac{11}{4} x-\frac{1}{4}=-\frac{11}{4}
সিমপ্লিফাই।
x=3 x=-\frac{5}{2}
সমীকরণের উভয় দিকে \frac{1}{4} যোগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}