মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

a+b=-17 ab=3\left(-6\right)=-18
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি 3x^{2}+ax+bx-6 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-18 2,-9 3,-6
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -18 প্রদান করে।
1-18=-17 2-9=-7 3-6=-3
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-18 b=1
সমাধানটি হল সেই জোড়া যা -17 যোগফল প্রদান করে।
\left(3x^{2}-18x\right)+\left(x-6\right)
\left(3x^{2}-18x\right)+\left(x-6\right) হিসেবে 3x^{2}-17x-6 পুনরায় লিখুন৷
3x\left(x-6\right)+x-6
3x^{2}-18x-এ 3x ফ্যাক্টর আউট করুন।
\left(x-6\right)\left(3x+1\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-6 ফ্যাক্টর আউট করুন।
3x^{2}-17x-6=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 3\left(-6\right)}}{2\times 3}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-17\right)±\sqrt{289-4\times 3\left(-6\right)}}{2\times 3}
-17 এর বর্গ
x=\frac{-\left(-17\right)±\sqrt{289-12\left(-6\right)}}{2\times 3}
-4 কে 3 বার গুণ করুন।
x=\frac{-\left(-17\right)±\sqrt{289+72}}{2\times 3}
-12 কে -6 বার গুণ করুন।
x=\frac{-\left(-17\right)±\sqrt{361}}{2\times 3}
72 এ 289 যোগ করুন।
x=\frac{-\left(-17\right)±19}{2\times 3}
361 এর স্কোয়ার রুট নিন।
x=\frac{17±19}{2\times 3}
-17-এর বিপরীত হলো 17।
x=\frac{17±19}{6}
2 কে 3 বার গুণ করুন।
x=\frac{36}{6}
এখন সমীকরণটি সমাধান করুন x=\frac{17±19}{6} যখন ± হল যোগ৷ 19 এ 17 যোগ করুন।
x=6
36 কে 6 দিয়ে ভাগ করুন।
x=-\frac{2}{6}
এখন সমীকরণটি সমাধান করুন x=\frac{17±19}{6} যখন ± হল বিয়োগ৷ 17 থেকে 19 বাদ দিন।
x=-\frac{1}{3}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-2}{6} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
3x^{2}-17x-6=3\left(x-6\right)\left(x-\left(-\frac{1}{3}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 6 ও x_{2} এর ক্ষেত্রে বিকল্প -\frac{1}{3}
3x^{2}-17x-6=3\left(x-6\right)\left(x+\frac{1}{3}\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷
3x^{2}-17x-6=3\left(x-6\right)\times \frac{3x+1}{3}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে x এ \frac{1}{3} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
3x^{2}-17x-6=\left(x-6\right)\left(3x+1\right)
3 এবং 3 এর মধ্যে সর্বাধিক প্রচলিত ফ্যাক্টর 3 বাতিল করা হয়েছে৷