মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

3x^{2}+5x-2=0
উভয় দিক থেকে 2 বিয়োগ করুন।
a+b=5 ab=3\left(-2\right)=-6
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি 3x^{2}+ax+bx-2 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,6 -2,3
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -6 প্রদান করে।
-1+6=5 -2+3=1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-1 b=6
সমাধানটি হল সেই জোড়া যা 5 যোগফল প্রদান করে।
\left(3x^{2}-x\right)+\left(6x-2\right)
\left(3x^{2}-x\right)+\left(6x-2\right) হিসেবে 3x^{2}+5x-2 পুনরায় লিখুন৷
x\left(3x-1\right)+2\left(3x-1\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 2 ফ্যাক্টর আউট।
\left(3x-1\right)\left(x+2\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম 3x-1 ফ্যাক্টর আউট করুন।
x=\frac{1}{3} x=-2
সমীকরণের সমাধানগুলো খুঁজতে, 3x-1=0 এবং x+2=0 সমাধান করুন।
3x^{2}+5x=2
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
3x^{2}+5x-2=2-2
সমীকরণের উভয় দিক থেকে 2 বাদ দিন।
3x^{2}+5x-2=0
2 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
x=\frac{-5±\sqrt{5^{2}-4\times 3\left(-2\right)}}{2\times 3}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 3, b এর জন্য 5 এবং c এর জন্য -2 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-5±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
5 এর বর্গ
x=\frac{-5±\sqrt{25-12\left(-2\right)}}{2\times 3}
-4 কে 3 বার গুণ করুন।
x=\frac{-5±\sqrt{25+24}}{2\times 3}
-12 কে -2 বার গুণ করুন।
x=\frac{-5±\sqrt{49}}{2\times 3}
24 এ 25 যোগ করুন।
x=\frac{-5±7}{2\times 3}
49 এর স্কোয়ার রুট নিন।
x=\frac{-5±7}{6}
2 কে 3 বার গুণ করুন।
x=\frac{2}{6}
এখন সমীকরণটি সমাধান করুন x=\frac{-5±7}{6} যখন ± হল যোগ৷ 7 এ -5 যোগ করুন।
x=\frac{1}{3}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{2}{6} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=-\frac{12}{6}
এখন সমীকরণটি সমাধান করুন x=\frac{-5±7}{6} যখন ± হল বিয়োগ৷ -5 থেকে 7 বাদ দিন।
x=-2
-12 কে 6 দিয়ে ভাগ করুন।
x=\frac{1}{3} x=-2
সমীকরণটি এখন সমাধান করা হয়েছে।
3x^{2}+5x=2
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
\frac{3x^{2}+5x}{3}=\frac{2}{3}
3 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\frac{5}{3}x=\frac{2}{3}
3 দিয়ে ভাগ করে 3 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}+\frac{5}{3}x+\left(\frac{5}{6}\right)^{2}=\frac{2}{3}+\left(\frac{5}{6}\right)^{2}
\frac{5}{6} পেতে x টার্মের গুণাঙ্ক \frac{5}{3}-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে \frac{5}{6}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{2}{3}+\frac{25}{36}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে \frac{5}{6} এর বর্গ করুন।
x^{2}+\frac{5}{3}x+\frac{25}{36}=\frac{49}{36}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{25}{36} এ \frac{2}{3} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
\left(x+\frac{5}{6}\right)^{2}=\frac{49}{36}
x^{2}+\frac{5}{3}x+\frac{25}{36} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x+\frac{5}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+\frac{5}{6}=\frac{7}{6} x+\frac{5}{6}=-\frac{7}{6}
সিমপ্লিফাই।
x=\frac{1}{3} x=-2
সমীকরণের উভয় দিক থেকে \frac{5}{6} বাদ দিন।