x এর জন্য সমাধান করুন
x=2
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
x^{2}-4x+4=0
3 দিয়ে উভয় দিককে ভাগ করুন।
a+b=-4 ab=1\times 4=4
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি x^{2}+ax+bx+4 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,-4 -2,-2
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ঋণাত্মক, তাই a এবং b উভয়ই ঋণাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 4 প্রদান করে।
-1-4=-5 -2-2=-4
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-2 b=-2
সমাধানটি হল সেই জোড়া যা -4 যোগফল প্রদান করে।
\left(x^{2}-2x\right)+\left(-2x+4\right)
\left(x^{2}-2x\right)+\left(-2x+4\right) হিসেবে x^{2}-4x+4 পুনরায় লিখুন৷
x\left(x-2\right)-2\left(x-2\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে -2 ফ্যাক্টর আউট।
\left(x-2\right)\left(x-2\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-2 ফ্যাক্টর আউট করুন।
\left(x-2\right)^{2}
দুই সংখ্যা বিশিষ্ট বর্গ আবার লিখুন।
x=2
সমীকরণের সমাধানগুলো খুঁজতে, x-2=0 সমাধান করুন।
3x^{2}-12x+12=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 12}}{2\times 3}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 3, b এর জন্য -12 এবং c এর জন্য 12 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 12}}{2\times 3}
-12 এর বর্গ
x=\frac{-\left(-12\right)±\sqrt{144-12\times 12}}{2\times 3}
-4 কে 3 বার গুণ করুন।
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 3}
-12 কে 12 বার গুণ করুন।
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 3}
-144 এ 144 যোগ করুন।
x=-\frac{-12}{2\times 3}
0 এর স্কোয়ার রুট নিন।
x=\frac{12}{2\times 3}
-12-এর বিপরীত হলো 12।
x=\frac{12}{6}
2 কে 3 বার গুণ করুন।
x=2
12 কে 6 দিয়ে ভাগ করুন।
3x^{2}-12x+12=0
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
3x^{2}-12x+12-12=-12
সমীকরণের উভয় দিক থেকে 12 বাদ দিন।
3x^{2}-12x=-12
12 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
\frac{3x^{2}-12x}{3}=-\frac{12}{3}
3 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\left(-\frac{12}{3}\right)x=-\frac{12}{3}
3 দিয়ে ভাগ করে 3 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-4x=-\frac{12}{3}
-12 কে 3 দিয়ে ভাগ করুন।
x^{2}-4x=-4
-12 কে 3 দিয়ে ভাগ করুন।
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
-2 পেতে x টার্মের গুণাঙ্ক -4-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -2-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-4x+4=-4+4
-2 এর বর্গ
x^{2}-4x+4=0
4 এ -4 যোগ করুন।
\left(x-2\right)^{2}=0
x^{2}-4x+4 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-2=0 x-2=0
সিমপ্লিফাই।
x=2 x=2
সমীকরণের উভয় দিকে 2 যোগ করুন।
x=2
সমীকরণটি এখন সমাধান করা হয়েছে। সমীকরণগুলো একই৷
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}