ভাঙা
25\left(x-2\right)\left(x+3\right)
মূল্যায়ন করুন
25\left(x-2\right)\left(x+3\right)
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
25\left(x^{2}+x-6\right)
ফ্যাক্টর আউট 25।
a+b=1 ab=1\left(-6\right)=-6
বিবেচনা করুন x^{2}+x-6। গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি x^{2}+ax+bx-6 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,6 -2,3
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -6 প্রদান করে।
-1+6=5 -2+3=1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-2 b=3
সমাধানটি হল সেই জোড়া যা 1 যোগফল প্রদান করে।
\left(x^{2}-2x\right)+\left(3x-6\right)
\left(x^{2}-2x\right)+\left(3x-6\right) হিসেবে x^{2}+x-6 পুনরায় লিখুন৷
x\left(x-2\right)+3\left(x-2\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 3 ফ্যাক্টর আউট।
\left(x-2\right)\left(x+3\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-2 ফ্যাক্টর আউট করুন।
25\left(x-2\right)\left(x+3\right)
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
25x^{2}+25x-150=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-25±\sqrt{25^{2}-4\times 25\left(-150\right)}}{2\times 25}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-25±\sqrt{625-4\times 25\left(-150\right)}}{2\times 25}
25 এর বর্গ
x=\frac{-25±\sqrt{625-100\left(-150\right)}}{2\times 25}
-4 কে 25 বার গুণ করুন।
x=\frac{-25±\sqrt{625+15000}}{2\times 25}
-100 কে -150 বার গুণ করুন।
x=\frac{-25±\sqrt{15625}}{2\times 25}
15000 এ 625 যোগ করুন।
x=\frac{-25±125}{2\times 25}
15625 এর স্কোয়ার রুট নিন।
x=\frac{-25±125}{50}
2 কে 25 বার গুণ করুন।
x=\frac{100}{50}
এখন সমীকরণটি সমাধান করুন x=\frac{-25±125}{50} যখন ± হল যোগ৷ 125 এ -25 যোগ করুন।
x=2
100 কে 50 দিয়ে ভাগ করুন।
x=-\frac{150}{50}
এখন সমীকরণটি সমাধান করুন x=\frac{-25±125}{50} যখন ± হল বিয়োগ৷ -25 থেকে 125 বাদ দিন।
x=-3
-150 কে 50 দিয়ে ভাগ করুন।
25x^{2}+25x-150=25\left(x-2\right)\left(x-\left(-3\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 2 ও x_{2} এর ক্ষেত্রে বিকল্প -3
25x^{2}+25x-150=25\left(x-2\right)\left(x+3\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}