মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

x^{2}-11x+24
বহুপদটিকে স্ট্যান্ডার্ড ফর্মে দেখাতে পুনরায় সাজান। টার্ম উচ্চতর থেকে নিম্নতর পাওয়ার ক্রমে স্থাপন করুন।
a+b=-11 ab=1\times 24=24
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি x^{2}+ax+bx+24 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,-24 -2,-12 -3,-8 -4,-6
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ঋণাত্মক, তাই a এবং b উভয়ই ঋণাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 24 প্রদান করে।
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-8 b=-3
সমাধানটি হল সেই জোড়া যা -11 যোগফল প্রদান করে।
\left(x^{2}-8x\right)+\left(-3x+24\right)
\left(x^{2}-8x\right)+\left(-3x+24\right) হিসেবে x^{2}-11x+24 পুনরায় লিখুন৷
x\left(x-8\right)-3\left(x-8\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে -3 ফ্যাক্টর আউট।
\left(x-8\right)\left(x-3\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-8 ফ্যাক্টর আউট করুন।
x^{2}-11x+24=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 24}}{2}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-11\right)±\sqrt{121-4\times 24}}{2}
-11 এর বর্গ
x=\frac{-\left(-11\right)±\sqrt{121-96}}{2}
-4 কে 24 বার গুণ করুন।
x=\frac{-\left(-11\right)±\sqrt{25}}{2}
-96 এ 121 যোগ করুন।
x=\frac{-\left(-11\right)±5}{2}
25 এর স্কোয়ার রুট নিন।
x=\frac{11±5}{2}
-11-এর বিপরীত হলো 11।
x=\frac{16}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{11±5}{2} যখন ± হল যোগ৷ 5 এ 11 যোগ করুন।
x=8
16 কে 2 দিয়ে ভাগ করুন।
x=\frac{6}{2}
এখন সমীকরণটি সমাধান করুন x=\frac{11±5}{2} যখন ± হল বিয়োগ৷ 11 থেকে 5 বাদ দিন।
x=3
6 কে 2 দিয়ে ভাগ করুন।
x^{2}-11x+24=\left(x-8\right)\left(x-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 8 ও x_{2} এর ক্ষেত্রে বিকল্প 3