x এর জন্য সমাধান করুন
x = -\frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx -1.042427968
x = \frac{\sqrt{3 \sqrt{633} + 81}}{12} \approx 1.042427968
x=\frac{\sqrt{81-3\sqrt{633}}}{12}\approx 0.195816067
x=-\frac{\sqrt{81-3\sqrt{633}}}{12}\approx -0.195816067
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
24x^{2}x^{2}+1=27x^{2}
ভ্যারিয়েবল x 0-এর সমান হতে পারে না যেহেতু শূন্য দ্বারা ভাগ নির্ধারিত নয়। সমীকরণের উভয় দিককে x^{2} দিয়ে গুণ করুন।
24x^{4}+1=27x^{2}
একই বেসের পাওয়ারগুলি গুণ করতে, সেগুলির এক্সপোনেন্ট যোগ করুন৷ 4 পেতে 2 এবং 2 যোগ করুন৷
24x^{4}+1-27x^{2}=0
উভয় দিক থেকে 27x^{2} বিয়োগ করুন।
24t^{2}-27t+1=0
x^{2} এর জন্য t বিকল্প নিন৷
t=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 24\times 1}}{2\times 24}
দ্বিঘাত সূত্র : \frac{-b±\sqrt{b^{2}-4ac}}{2a} ব্যবহার করে ফর্ম ax^{2}+bx+c=0 -এর সমস্ত সমীকরণ সমাধান করা যেতে পারে৷ দ্বিঘাত সূত্রে a-এর জন্য 24, b-এর জন্য -27, c-এর জন্য 1।
t=\frac{27±\sqrt{633}}{48}
গণনাটি করুন৷
t=\frac{\sqrt{633}}{48}+\frac{9}{16} t=-\frac{\sqrt{633}}{48}+\frac{9}{16}
সমীকরণ t=\frac{27±\sqrt{633}}{48} সমাধান করুন যেখানে ± হল প্লাস এবং ± হল মাইনাস।
x=\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{\frac{\sqrt{633}}{3}+9}}{4} x=\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4} x=-\frac{\sqrt{-\frac{\sqrt{633}}{3}+9}}{4}
যেহেতু x=t^{2}, প্রতিটি t-এর জন্য x=±\sqrt{t} মূল্যায়ন করে সমাধানগুলো পাওয়া গেছে৷
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}