x এর জন্য সমাধান করুন
x=\frac{\sqrt{543890}}{685}-1\approx 0.076626253
x=-\frac{\sqrt{543890}}{685}-1\approx -2.076626253
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
\frac{2055\left(x+1\right)^{2}}{2055}=\frac{2382}{2055}
2055 দিয়ে উভয় দিককে ভাগ করুন।
\left(x+1\right)^{2}=\frac{2382}{2055}
2055 দিয়ে ভাগ করে 2055 দিয়ে গুণ করে আগের অবস্থায় আনুন।
\left(x+1\right)^{2}=\frac{794}{685}
3 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{2382}{2055} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x+1=\frac{\sqrt{543890}}{685} x+1=-\frac{\sqrt{543890}}{685}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+1-1=\frac{\sqrt{543890}}{685}-1 x+1-1=-\frac{\sqrt{543890}}{685}-1
সমীকরণের উভয় দিক থেকে 1 বাদ দিন।
x=\frac{\sqrt{543890}}{685}-1 x=-\frac{\sqrt{543890}}{685}-1
1 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}