z এর জন্য সমাধান করুন
z = -\frac{3}{2} = -1\frac{1}{2} = -1.5
z=12
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
a+b=-21 ab=2\left(-36\right)=-72
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি 2z^{2}+az+bz-36 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-72 2,-36 3,-24 4,-18 6,-12 8,-9
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -72 প্রদান করে।
1-72=-71 2-36=-34 3-24=-21 4-18=-14 6-12=-6 8-9=-1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-24 b=3
সমাধানটি হল সেই জোড়া যা -21 যোগফল প্রদান করে।
\left(2z^{2}-24z\right)+\left(3z-36\right)
\left(2z^{2}-24z\right)+\left(3z-36\right) হিসেবে 2z^{2}-21z-36 পুনরায় লিখুন৷
2z\left(z-12\right)+3\left(z-12\right)
প্রথম গোষ্ঠীতে 2z এবং দ্বিতীয় গোষ্ঠীতে 3 ফ্যাক্টর আউট।
\left(z-12\right)\left(2z+3\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম z-12 ফ্যাক্টর আউট করুন।
z=12 z=-\frac{3}{2}
সমীকরণের সমাধানগুলো খুঁজতে, z-12=0 এবং 2z+3=0 সমাধান করুন।
2z^{2}-21z-36=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
z=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 2\left(-36\right)}}{2\times 2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 2, b এর জন্য -21 এবং c এর জন্য -36 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
z=\frac{-\left(-21\right)±\sqrt{441-4\times 2\left(-36\right)}}{2\times 2}
-21 এর বর্গ
z=\frac{-\left(-21\right)±\sqrt{441-8\left(-36\right)}}{2\times 2}
-4 কে 2 বার গুণ করুন।
z=\frac{-\left(-21\right)±\sqrt{441+288}}{2\times 2}
-8 কে -36 বার গুণ করুন।
z=\frac{-\left(-21\right)±\sqrt{729}}{2\times 2}
288 এ 441 যোগ করুন।
z=\frac{-\left(-21\right)±27}{2\times 2}
729 এর স্কোয়ার রুট নিন।
z=\frac{21±27}{2\times 2}
-21-এর বিপরীত হলো 21।
z=\frac{21±27}{4}
2 কে 2 বার গুণ করুন।
z=\frac{48}{4}
এখন সমীকরণটি সমাধান করুন z=\frac{21±27}{4} যখন ± হল যোগ৷ 27 এ 21 যোগ করুন।
z=12
48 কে 4 দিয়ে ভাগ করুন।
z=-\frac{6}{4}
এখন সমীকরণটি সমাধান করুন z=\frac{21±27}{4} যখন ± হল বিয়োগ৷ 21 থেকে 27 বাদ দিন।
z=-\frac{3}{2}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-6}{4} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
z=12 z=-\frac{3}{2}
সমীকরণটি এখন সমাধান করা হয়েছে।
2z^{2}-21z-36=0
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
2z^{2}-21z-36-\left(-36\right)=-\left(-36\right)
সমীকরণের উভয় দিকে 36 যোগ করুন।
2z^{2}-21z=-\left(-36\right)
-36 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
2z^{2}-21z=36
0 থেকে -36 বাদ দিন।
\frac{2z^{2}-21z}{2}=\frac{36}{2}
2 দিয়ে উভয় দিককে ভাগ করুন।
z^{2}-\frac{21}{2}z=\frac{36}{2}
2 দিয়ে ভাগ করে 2 দিয়ে গুণ করে আগের অবস্থায় আনুন।
z^{2}-\frac{21}{2}z=18
36 কে 2 দিয়ে ভাগ করুন।
z^{2}-\frac{21}{2}z+\left(-\frac{21}{4}\right)^{2}=18+\left(-\frac{21}{4}\right)^{2}
-\frac{21}{4} পেতে x টার্মের গুণাঙ্ক -\frac{21}{2}-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{21}{4}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
z^{2}-\frac{21}{2}z+\frac{441}{16}=18+\frac{441}{16}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{21}{4} এর বর্গ করুন।
z^{2}-\frac{21}{2}z+\frac{441}{16}=\frac{729}{16}
\frac{441}{16} এ 18 যোগ করুন।
\left(z-\frac{21}{4}\right)^{2}=\frac{729}{16}
z^{2}-\frac{21}{2}z+\frac{441}{16} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(z-\frac{21}{4}\right)^{2}}=\sqrt{\frac{729}{16}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
z-\frac{21}{4}=\frac{27}{4} z-\frac{21}{4}=-\frac{27}{4}
সিমপ্লিফাই।
z=12 z=-\frac{3}{2}
সমীকরণের উভয় দিকে \frac{21}{4} যোগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}