মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2\left(x^{2}-4x-12\right)
ফ্যাক্টর আউট 2।
a+b=-4 ab=1\left(-12\right)=-12
বিবেচনা করুন x^{2}-4x-12। গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি x^{2}+ax+bx-12 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-12 2,-6 3,-4
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -12 প্রদান করে।
1-12=-11 2-6=-4 3-4=-1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-6 b=2
সমাধানটি হল সেই জোড়া যা -4 যোগফল প্রদান করে।
\left(x^{2}-6x\right)+\left(2x-12\right)
\left(x^{2}-6x\right)+\left(2x-12\right) হিসেবে x^{2}-4x-12 পুনরায় লিখুন৷
x\left(x-6\right)+2\left(x-6\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 2 ফ্যাক্টর আউট।
\left(x-6\right)\left(x+2\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-6 ফ্যাক্টর আউট করুন।
2\left(x-6\right)\left(x+2\right)
সম্পূর্ণ গুণনীয়ক অভিব্যক্তিটি আবার লিখুন।
2x^{2}-8x-24=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\left(-24\right)}}{2\times 2}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\left(-24\right)}}{2\times 2}
-8 এর বর্গ
x=\frac{-\left(-8\right)±\sqrt{64-8\left(-24\right)}}{2\times 2}
-4 কে 2 বার গুণ করুন।
x=\frac{-\left(-8\right)±\sqrt{64+192}}{2\times 2}
-8 কে -24 বার গুণ করুন।
x=\frac{-\left(-8\right)±\sqrt{256}}{2\times 2}
192 এ 64 যোগ করুন।
x=\frac{-\left(-8\right)±16}{2\times 2}
256 এর স্কোয়ার রুট নিন।
x=\frac{8±16}{2\times 2}
-8-এর বিপরীত হলো 8।
x=\frac{8±16}{4}
2 কে 2 বার গুণ করুন।
x=\frac{24}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{8±16}{4} যখন ± হল যোগ৷ 16 এ 8 যোগ করুন।
x=6
24 কে 4 দিয়ে ভাগ করুন।
x=-\frac{8}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{8±16}{4} যখন ± হল বিয়োগ৷ 8 থেকে 16 বাদ দিন।
x=-2
-8 কে 4 দিয়ে ভাগ করুন।
2x^{2}-8x-24=2\left(x-6\right)\left(x-\left(-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 6 ও x_{2} এর ক্ষেত্রে বিকল্প -2
2x^{2}-8x-24=2\left(x-6\right)\left(x+2\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷