x এর জন্য সমাধান করুন
x=-1
x=2
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
x^{2}-x-2=0
2 দিয়ে উভয় দিককে ভাগ করুন।
a+b=-1 ab=1\left(-2\right)=-2
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি x^{2}+ax+bx-2 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
a=-2 b=1
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। কেবলমাত্র এই প্রকারের জোড়াটি হল সিস্টেম সমাধান।
\left(x^{2}-2x\right)+\left(x-2\right)
\left(x^{2}-2x\right)+\left(x-2\right) হিসেবে x^{2}-x-2 পুনরায় লিখুন৷
x\left(x-2\right)+x-2
x^{2}-2x-এ x ফ্যাক্টর আউট করুন।
\left(x-2\right)\left(x+1\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-2 ফ্যাক্টর আউট করুন।
x=2 x=-1
সমীকরণের সমাধানগুলো খুঁজতে, x-2=0 এবং x+1=0 সমাধান করুন।
2x^{2}-2x-4=0
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-4\right)}}{2\times 2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 2, b এর জন্য -2 এবং c এর জন্য -4 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-4\right)}}{2\times 2}
-2 এর বর্গ
x=\frac{-\left(-2\right)±\sqrt{4-8\left(-4\right)}}{2\times 2}
-4 কে 2 বার গুণ করুন।
x=\frac{-\left(-2\right)±\sqrt{4+32}}{2\times 2}
-8 কে -4 বার গুণ করুন।
x=\frac{-\left(-2\right)±\sqrt{36}}{2\times 2}
32 এ 4 যোগ করুন।
x=\frac{-\left(-2\right)±6}{2\times 2}
36 এর স্কোয়ার রুট নিন।
x=\frac{2±6}{2\times 2}
-2-এর বিপরীত হলো 2।
x=\frac{2±6}{4}
2 কে 2 বার গুণ করুন।
x=\frac{8}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{2±6}{4} যখন ± হল যোগ৷ 6 এ 2 যোগ করুন।
x=2
8 কে 4 দিয়ে ভাগ করুন।
x=-\frac{4}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{2±6}{4} যখন ± হল বিয়োগ৷ 2 থেকে 6 বাদ দিন।
x=-1
-4 কে 4 দিয়ে ভাগ করুন।
x=2 x=-1
সমীকরণটি এখন সমাধান করা হয়েছে।
2x^{2}-2x-4=0
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
2x^{2}-2x-4-\left(-4\right)=-\left(-4\right)
সমীকরণের উভয় দিকে 4 যোগ করুন।
2x^{2}-2x=-\left(-4\right)
-4 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
2x^{2}-2x=4
0 থেকে -4 বাদ দিন।
\frac{2x^{2}-2x}{2}=\frac{4}{2}
2 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\left(-\frac{2}{2}\right)x=\frac{4}{2}
2 দিয়ে ভাগ করে 2 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}-x=\frac{4}{2}
-2 কে 2 দিয়ে ভাগ করুন।
x^{2}-x=2
4 কে 2 দিয়ে ভাগ করুন।
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=2+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} পেতে x টার্মের গুণাঙ্ক -1-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে -\frac{1}{2}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}-x+\frac{1}{4}=2+\frac{1}{4}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে -\frac{1}{2} এর বর্গ করুন।
x^{2}-x+\frac{1}{4}=\frac{9}{4}
\frac{1}{4} এ 2 যোগ করুন।
\left(x-\frac{1}{2}\right)^{2}=\frac{9}{4}
x^{2}-x+\frac{1}{4} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x-\frac{1}{2}=\frac{3}{2} x-\frac{1}{2}=-\frac{3}{2}
সিমপ্লিফাই।
x=2 x=-1
সমীকরণের উভয় দিকে \frac{1}{2} যোগ করুন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}