মূল বিষয়বস্তুতে এড়িয়ে যান
x এর জন্য সমাধান করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

2x^{2}+3x-12+7=0
উভয় সাইডে 7 যোগ করুন৷
2x^{2}+3x-5=0
-5 পেতে -12 এবং 7 যোগ করুন।
a+b=3 ab=2\left(-5\right)=-10
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি 2x^{2}+ax+bx-5 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
-1,10 -2,5
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ধনাত্মক, তাই ঋণাত্মকটির তুলনায় ধনাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -10 প্রদান করে।
-1+10=9 -2+5=3
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=-2 b=5
সমাধানটি হল সেই জোড়া যা 3 যোগফল প্রদান করে।
\left(2x^{2}-2x\right)+\left(5x-5\right)
\left(2x^{2}-2x\right)+\left(5x-5\right) হিসেবে 2x^{2}+3x-5 পুনরায় লিখুন৷
2x\left(x-1\right)+5\left(x-1\right)
প্রথম গোষ্ঠীতে 2x এবং দ্বিতীয় গোষ্ঠীতে 5 ফ্যাক্টর আউট।
\left(x-1\right)\left(2x+5\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-1 ফ্যাক্টর আউট করুন।
x=1 x=-\frac{5}{2}
সমীকরণের সমাধানগুলো খুঁজতে, x-1=0 এবং 2x+5=0 সমাধান করুন।
2x^{2}+3x-12=-7
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
2x^{2}+3x-12-\left(-7\right)=-7-\left(-7\right)
সমীকরণের উভয় দিকে 7 যোগ করুন।
2x^{2}+3x-12-\left(-7\right)=0
-7 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
2x^{2}+3x-5=0
-12 থেকে -7 বাদ দিন।
x=\frac{-3±\sqrt{3^{2}-4\times 2\left(-5\right)}}{2\times 2}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য 2, b এর জন্য 3 এবং c এর জন্য -5 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-3±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
3 এর বর্গ
x=\frac{-3±\sqrt{9-8\left(-5\right)}}{2\times 2}
-4 কে 2 বার গুণ করুন।
x=\frac{-3±\sqrt{9+40}}{2\times 2}
-8 কে -5 বার গুণ করুন।
x=\frac{-3±\sqrt{49}}{2\times 2}
40 এ 9 যোগ করুন।
x=\frac{-3±7}{2\times 2}
49 এর স্কোয়ার রুট নিন।
x=\frac{-3±7}{4}
2 কে 2 বার গুণ করুন।
x=\frac{4}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{-3±7}{4} যখন ± হল যোগ৷ 7 এ -3 যোগ করুন।
x=1
4 কে 4 দিয়ে ভাগ করুন।
x=-\frac{10}{4}
এখন সমীকরণটি সমাধান করুন x=\frac{-3±7}{4} যখন ± হল বিয়োগ৷ -3 থেকে 7 বাদ দিন।
x=-\frac{5}{2}
2 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{-10}{4} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
x=1 x=-\frac{5}{2}
সমীকরণটি এখন সমাধান করা হয়েছে।
2x^{2}+3x-12=-7
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
2x^{2}+3x-12-\left(-12\right)=-7-\left(-12\right)
সমীকরণের উভয় দিকে 12 যোগ করুন।
2x^{2}+3x=-7-\left(-12\right)
-12 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
2x^{2}+3x=5
-7 থেকে -12 বাদ দিন।
\frac{2x^{2}+3x}{2}=\frac{5}{2}
2 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\frac{3}{2}x=\frac{5}{2}
2 দিয়ে ভাগ করে 2 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
\frac{3}{4} পেতে x টার্মের গুণাঙ্ক \frac{3}{2}-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে \frac{3}{4}-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
ভগ্নাংশের লব ও হরের বর্গ করার মাধ্যমে \frac{3}{4} এর বর্গ করুন।
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
কমন হর খুঁজে এবং লব যোগ করার মাধ্যমে \frac{9}{16} এ \frac{5}{2} যোগ করুন। তারপর সম্ভব হলে ভগ্নাংশটিকে ছোট টার্মে হ্রাস করুন।
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
x^{2}+\frac{3}{2}x+\frac{9}{16} কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
সিমপ্লিফাই।
x=1 x=-\frac{5}{2}
সমীকরণের উভয় দিক থেকে \frac{3}{4} বাদ দিন।