মূল বিষয়বস্তুতে এড়িয়ে যান
t এর জন্য সমাধান করুন
Tick mark Image

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

\left(2\sqrt{4\left(t-1\right)}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
সমীকরণের উভয় দিকের বর্গ করুন।
\left(2\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
4 কে t-1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
2^{2}\left(\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
\left(2\sqrt{4t-4}\right)^{2} প্রসারিত করুন।
4\left(\sqrt{4t-4}\right)^{2}=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
2 এর ঘাতে 2 গণনা করুন এবং 4 পান।
4\left(4t-4\right)=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
2 এর ঘাতে \sqrt{4t-4} গণনা করুন এবং 4t-4 পান।
16t-16=\left(\sqrt{4\left(2t-1\right)}\right)^{2}
4 কে 4t-4 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
16t-16=\left(\sqrt{8t-4}\right)^{2}
4 কে 2t-1 দিয়ে গুণ করতে ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করুন।
16t-16=8t-4
2 এর ঘাতে \sqrt{8t-4} গণনা করুন এবং 8t-4 পান।
16t-16-8t=-4
উভয় দিক থেকে 8t বিয়োগ করুন।
8t-16=-4
8t পেতে 16t এবং -8t একত্রিত করুন।
8t=-4+16
উভয় সাইডে 16 যোগ করুন৷
8t=12
12 পেতে -4 এবং 16 যোগ করুন।
t=\frac{12}{8}
8 দিয়ে উভয় দিককে ভাগ করুন।
t=\frac{3}{2}
4 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{12}{8} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
2\sqrt{4\left(\frac{3}{2}-1\right)}=\sqrt{4\left(2\times \frac{3}{2}-1\right)}
সমীকরণ 2\sqrt{4\left(t-1\right)}=\sqrt{4\left(2t-1\right)} এ t এর জন্য \frac{3}{2} বিকল্প নিন৷
2\times 2^{\frac{1}{2}}=2\times 2^{\frac{1}{2}}
সিমপ্লিফাই। The value t=\frac{3}{2} satisfies the equation.
t=\frac{3}{2}
Equation 2\sqrt{4\left(t-1\right)}=\sqrt{4\left(2t-1\right)} has a unique solution.