মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-x^{2}+16x-48
বহুপদটিকে স্ট্যান্ডার্ড ফর্মে দেখাতে পুনরায় সাজান। টার্ম উচ্চতর থেকে নিম্নতর পাওয়ার ক্রমে স্থাপন করুন।
a+b=16 ab=-\left(-48\right)=48
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি -x^{2}+ax+bx-48 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,48 2,24 3,16 4,12 6,8
যেহেতু ab হল ধনাত্মক, তাই a এবং b-এর একই প্রতীক রয়েছে। যেহেতু a+b হল ধনাত্মক, তাই a এবং b উভয়ই ধনাত্মক হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য 48 প্রদান করে।
1+48=49 2+24=26 3+16=19 4+12=16 6+8=14
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=12 b=4
সমাধানটি হল সেই জোড়া যা 16 যোগফল প্রদান করে।
\left(-x^{2}+12x\right)+\left(4x-48\right)
\left(-x^{2}+12x\right)+\left(4x-48\right) হিসেবে -x^{2}+16x-48 পুনরায় লিখুন৷
-x\left(x-12\right)+4\left(x-12\right)
প্রথম গোষ্ঠীতে -x এবং দ্বিতীয় গোষ্ঠীতে 4 ফ্যাক্টর আউট।
\left(x-12\right)\left(-x+4\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম x-12 ফ্যাক্টর আউট করুন।
-x^{2}+16x-48=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-16±\sqrt{16^{2}-4\left(-1\right)\left(-48\right)}}{2\left(-1\right)}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-16±\sqrt{256-4\left(-1\right)\left(-48\right)}}{2\left(-1\right)}
16 এর বর্গ
x=\frac{-16±\sqrt{256+4\left(-48\right)}}{2\left(-1\right)}
-4 কে -1 বার গুণ করুন।
x=\frac{-16±\sqrt{256-192}}{2\left(-1\right)}
4 কে -48 বার গুণ করুন।
x=\frac{-16±\sqrt{64}}{2\left(-1\right)}
-192 এ 256 যোগ করুন।
x=\frac{-16±8}{2\left(-1\right)}
64 এর স্কোয়ার রুট নিন।
x=\frac{-16±8}{-2}
2 কে -1 বার গুণ করুন।
x=-\frac{8}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{-16±8}{-2} যখন ± হল যোগ৷ 8 এ -16 যোগ করুন।
x=4
-8 কে -2 দিয়ে ভাগ করুন।
x=-\frac{24}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{-16±8}{-2} যখন ± হল বিয়োগ৷ -16 থেকে 8 বাদ দিন।
x=12
-24 কে -2 দিয়ে ভাগ করুন।
-x^{2}+16x-48=-\left(x-4\right)\left(x-12\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প 4 ও x_{2} এর ক্ষেত্রে বিকল্প 12