x এর জন্য সমাধান করুন
x=2\log_{1.025}\left(0.06\right)\approx -227.874689765
x এর জন্য সমাধান করুন (complex solution)
x=\frac{i\times 2\pi n_{1}}{\ln(1.025)}+2\log_{1.025}\left(0.06\right)
n_{1}\in \mathrm{Z}
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
\frac{14.4}{4000}=1.025^{x}
4000 দিয়ে উভয় দিককে ভাগ করুন।
\frac{144}{40000}=1.025^{x}
উভয় লবকে দিয়ে গুণ করে এবং 10 দিয়ে হরকে গুণ করে \frac{14.4}{4000}-কে প্রসারিত করুন৷
\frac{9}{2500}=1.025^{x}
16 -কে নির্গমন ও বাতিল করার মাধ্যমে \frac{144}{40000} ভগ্নাংশটি সর্বনিম্ন টার্মে কমিয়ে আনুন।
1.025^{x}=\frac{9}{2500}
সাইডগুলো অদলবদল করুন যাতে সব পরিবর্তনশীল টার্মগুলো বামদিকে থাকে।
\log(1.025^{x})=\log(\frac{9}{2500})
সমীকরণের উভয়দিকের লগারিদম নিন।
x\log(1.025)=\log(\frac{9}{2500})
লগারিদমের কোনো সংখ্যা পাওয়ারের সমান বাড়লে তখন সেটি লগারিদমের পাওয়ার হয়।
x=\frac{\log(\frac{9}{2500})}{\log(1.025)}
\log(1.025) দিয়ে উভয় দিককে ভাগ করুন।
x=\log_{1.025}\left(\frac{9}{2500}\right)
বেস সূত্র পরিবর্তন করার মাধ্যমে \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right)।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}