মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

-x^{2}-4x+12
বহুপদটিকে স্ট্যান্ডার্ড ফর্মে দেখাতে পুনরায় সাজান। টার্ম উচ্চতর থেকে নিম্নতর পাওয়ার ক্রমে স্থাপন করুন।
a+b=-4 ab=-12=-12
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি -x^{2}+ax+bx+12 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-12 2,-6 3,-4
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -12 প্রদান করে।
1-12=-11 2-6=-4 3-4=-1
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=2 b=-6
সমাধানটি হল সেই জোড়া যা -4 যোগফল প্রদান করে।
\left(-x^{2}+2x\right)+\left(-6x+12\right)
\left(-x^{2}+2x\right)+\left(-6x+12\right) হিসেবে -x^{2}-4x+12 পুনরায় লিখুন৷
x\left(-x+2\right)+6\left(-x+2\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 6 ফ্যাক্টর আউট।
\left(-x+2\right)\left(x+6\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম -x+2 ফ্যাক্টর আউট করুন।
-x^{2}-4x+12=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-1\right)\times 12}}{2\left(-1\right)}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-1\right)\times 12}}{2\left(-1\right)}
-4 এর বর্গ
x=\frac{-\left(-4\right)±\sqrt{16+4\times 12}}{2\left(-1\right)}
-4 কে -1 বার গুণ করুন।
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2\left(-1\right)}
4 কে 12 বার গুণ করুন।
x=\frac{-\left(-4\right)±\sqrt{64}}{2\left(-1\right)}
48 এ 16 যোগ করুন।
x=\frac{-\left(-4\right)±8}{2\left(-1\right)}
64 এর স্কোয়ার রুট নিন।
x=\frac{4±8}{2\left(-1\right)}
-4-এর বিপরীত হলো 4।
x=\frac{4±8}{-2}
2 কে -1 বার গুণ করুন।
x=\frac{12}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{4±8}{-2} যখন ± হল যোগ৷ 8 এ 4 যোগ করুন।
x=-6
12 কে -2 দিয়ে ভাগ করুন।
x=-\frac{4}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{4±8}{-2} যখন ± হল বিয়োগ৷ 4 থেকে 8 বাদ দিন।
x=2
-4 কে -2 দিয়ে ভাগ করুন।
-x^{2}-4x+12=-\left(x-\left(-6\right)\right)\left(x-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প -6 ও x_{2} এর ক্ষেত্রে বিকল্প 2
-x^{2}-4x+12=-\left(x+6\right)\left(x-2\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷