x এর জন্য সমাধান করুন
x=-3
x=1
গ্রাফ
শেয়ার করুন
ক্লিপবোর্ডে কপি করা হয়েছে
-x^{2}-2x+3=0
উভয় সাইডে 3 যোগ করুন৷
a+b=-2 ab=-3=-3
সমীকরণটি সমাধান করতে, গোষ্ঠীভুক্ত করার মাধ্যমে বাম দিকেরটি গুণনীয়ক করুন। প্রথমত, বাম দিকেরটি -x^{2}+ax+bx+3 হিসাবে আবার লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
a=1 b=-3
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। কেবলমাত্র এই প্রকারের জোড়াটি হল সিস্টেম সমাধান।
\left(-x^{2}+x\right)+\left(-3x+3\right)
\left(-x^{2}+x\right)+\left(-3x+3\right) হিসেবে -x^{2}-2x+3 পুনরায় লিখুন৷
x\left(-x+1\right)+3\left(-x+1\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 3 ফ্যাক্টর আউট।
\left(-x+1\right)\left(x+3\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম -x+1 ফ্যাক্টর আউট করুন।
x=1 x=-3
সমীকরণের সমাধানগুলো খুঁজতে, -x+1=0 এবং x+3=0 সমাধান করুন।
-x^{2}-2x=-3
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
-x^{2}-2x-\left(-3\right)=-3-\left(-3\right)
সমীকরণের উভয় দিকে 3 যোগ করুন।
-x^{2}-2x-\left(-3\right)=0
-3 কে তার থেকে বাদ দিলে 0 পড়ে থাকে।
-x^{2}-2x+3=0
0 থেকে -3 বাদ দিন।
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
এই সমীকরণটি আদর্শ আকারের: ax^{2}+bx+c=0। দ্বিঘাত সূত্রে a এর জন্য -1, b এর জন্য -2 এবং c এর জন্য 3 বিকল্প নিন, \frac{-b±\sqrt{b^{2}-4ac}}{2a}৷
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
-2 এর বর্গ
x=\frac{-\left(-2\right)±\sqrt{4+4\times 3}}{2\left(-1\right)}
-4 কে -1 বার গুণ করুন।
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-1\right)}
4 কে 3 বার গুণ করুন।
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-1\right)}
12 এ 4 যোগ করুন।
x=\frac{-\left(-2\right)±4}{2\left(-1\right)}
16 এর স্কোয়ার রুট নিন।
x=\frac{2±4}{2\left(-1\right)}
-2-এর বিপরীত হলো 2।
x=\frac{2±4}{-2}
2 কে -1 বার গুণ করুন।
x=\frac{6}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{2±4}{-2} যখন ± হল যোগ৷ 4 এ 2 যোগ করুন।
x=-3
6 কে -2 দিয়ে ভাগ করুন।
x=-\frac{2}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{2±4}{-2} যখন ± হল বিয়োগ৷ 2 থেকে 4 বাদ দিন।
x=1
-2 কে -2 দিয়ে ভাগ করুন।
x=-3 x=1
সমীকরণটি এখন সমাধান করা হয়েছে।
-x^{2}-2x=-3
দ্বিঘাত সমীকরণ যেমন এটিকে বর্গ করে সমাধান করা যেতে পারে। বর্গ সম্পূর্ণ করতে সমীকরণটিকে অবশ্যই এইরকম হতে হবে:x^{2}+bx=c।
\frac{-x^{2}-2x}{-1}=-\frac{3}{-1}
-1 দিয়ে উভয় দিককে ভাগ করুন।
x^{2}+\left(-\frac{2}{-1}\right)x=-\frac{3}{-1}
-1 দিয়ে ভাগ করে -1 দিয়ে গুণ করে আগের অবস্থায় আনুন।
x^{2}+2x=-\frac{3}{-1}
-2 কে -1 দিয়ে ভাগ করুন।
x^{2}+2x=3
-3 কে -1 দিয়ে ভাগ করুন।
x^{2}+2x+1^{2}=3+1^{2}
1 পেতে x টার্মের গুণাঙ্ক 2-কে 2 দিয়ে ভাগ করুন। তারপর সমীকরণের উভয় দিকে 1-এর বর্গ যোগ করুন। এই ধাপে সমীকরণের বামদিক সম্পূর্ণ বর্গ হবে।
x^{2}+2x+1=3+1
1 এর বর্গ
x^{2}+2x+1=4
1 এ 3 যোগ করুন।
\left(x+1\right)^{2}=4
x^{2}+2x+1 কে ভাঙুন। সাধারণভাবে, x^{2}+bx+c হল সম্পূর্ণ বর্গ, এটিকে এইভাবে গুণনীয়ক করা যায়: \left(x+\frac{b}{2}\right)^{2}।
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
সমীকরণের উভয় দিকে স্কোয়ার রুট ব্যবহার করুন।
x+1=2 x+1=-2
সিমপ্লিফাই।
x=1 x=-3
সমীকরণের উভয় দিক থেকে 1 বাদ দিন।
উদাহরণ
দ্বিঘাত সমীকরণ
{ x } ^ { 2 } - 4 x - 5 = 0
ত্রিকোণমিতি
4 \sin \theta \cos \theta = 2 \sin \theta
রৈখিক সমীকরণ
y = 3x + 4
পাটিগণিত
699 * 533
মেট্রিক্স
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
সমকালীন সমীকরণ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ডিফারেন্সিয়েশন
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ইন্টিগ্রেশন
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
লিমিট
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}