মূল বিষয়বস্তুতে এড়িয়ে যান
ভাঙা
Tick mark Image
মূল্যায়ন করুন
Tick mark Image
গ্রাফ

ওয়েব সন্ধান থেকে অনুরূপ প্রশ্নাবলী

শেয়ার করুন

a+b=-2 ab=-35=-35
গোষ্ঠীভুক্ত করার মাধ্যমে অভিব্যক্তিটি গুণনীয়ক করুন। প্রথমত, অভিব্যক্তিটি -x^{2}+ax+bx+35 হিসাবে পুনরায় লিখতে হবে। a এবং b খুঁজতে, সমাধান করতে হবে এমন একটি সিস্টেম সেট আপ করুন।
1,-35 5,-7
যেহেতু ab হল ঋণাত্মক, তাই a এবং b-এর একই বিপরীত প্রতীকগুলো থাকে। যেহেতু a+b হল ঋণাত্মক, তাই ধনাত্মকটির তুলনায় ঋণাত্মক সংখ্যাটির পরম মান বৃহত্তর হয়। এই জাতীয় সমস্ত জোড়া তালিকাবদ্ধ করুন যা পণ্য -35 প্রদান করে।
1-35=-34 5-7=-2
প্রতিটি জোড়ার জন্য যোগফল গণনা করুন।
a=5 b=-7
সমাধানটি হল সেই জোড়া যা -2 যোগফল প্রদান করে।
\left(-x^{2}+5x\right)+\left(-7x+35\right)
\left(-x^{2}+5x\right)+\left(-7x+35\right) হিসেবে -x^{2}-2x+35 পুনরায় লিখুন৷
x\left(-x+5\right)+7\left(-x+5\right)
প্রথম গোষ্ঠীতে x এবং দ্বিতীয় গোষ্ঠীতে 7 ফ্যাক্টর আউট।
\left(-x+5\right)\left(x+7\right)
ডিস্ট্রিবিউটিভ প্রোপার্টি ব্যবহার করে সাধারণ টার্ম -x+5 ফ্যাক্টর আউট করুন।
-x^{2}-2x+35=0
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ট্রান্সফর্মেশনটি ব্যবহার করে দ্বিঘাত বহুপদ গুণনীয়ক করা যেতে পারে, যেখানে x_{1} এবং x_{2} হলো ax^{2}+bx+c=0 দ্বিঘাত সমীকরণের সমাধান।
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\times 35}}{2\left(-1\right)}
ফর্মের সমস্ত সমীকরণ ax^{2}+bx+c=0 দ্বিঘাত সূত্র ব্যবহার করে সমাধান করা যেতে পারে: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। দ্বিঘাত সূত্র দুটি সমাধান দেয়, যখন ± যোগ করা হয় এবং যখন এটি বিয়োগ করা হয়।
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\times 35}}{2\left(-1\right)}
-2 এর বর্গ
x=\frac{-\left(-2\right)±\sqrt{4+4\times 35}}{2\left(-1\right)}
-4 কে -1 বার গুণ করুন।
x=\frac{-\left(-2\right)±\sqrt{4+140}}{2\left(-1\right)}
4 কে 35 বার গুণ করুন।
x=\frac{-\left(-2\right)±\sqrt{144}}{2\left(-1\right)}
140 এ 4 যোগ করুন।
x=\frac{-\left(-2\right)±12}{2\left(-1\right)}
144 এর স্কোয়ার রুট নিন।
x=\frac{2±12}{2\left(-1\right)}
-2-এর বিপরীত হলো 2।
x=\frac{2±12}{-2}
2 কে -1 বার গুণ করুন।
x=\frac{14}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{2±12}{-2} যখন ± হল যোগ৷ 12 এ 2 যোগ করুন।
x=-7
14 কে -2 দিয়ে ভাগ করুন।
x=-\frac{10}{-2}
এখন সমীকরণটি সমাধান করুন x=\frac{2±12}{-2} যখন ± হল বিয়োগ৷ 2 থেকে 12 বাদ দিন।
x=5
-10 কে -2 দিয়ে ভাগ করুন।
-x^{2}-2x+35=-\left(x-\left(-7\right)\right)\left(x-5\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ব্যাবহার করে প্রকৃত প্ররাশিটি গুণনীয়ক করুন। x_{1} এর ক্ষেত্রে বিকল্প -7 ও x_{2} এর ক্ষেত্রে বিকল্প 5
-x^{2}-2x+35=-\left(x+7\right)\left(x-5\right)
p-\left(-q\right) থেকে p+q এর সমস্ত অভিব্যক্তি সহজতর৷